(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables ==Question from ECE QE January 2001==...) |
|||
Line 6: | Line 6: | ||
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]== | ==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]== | ||
− | + | State and prove the Tchebycheff Inequality. | |
---- | ---- | ||
==Share and discuss your solutions below.== | ==Share and discuss your solutions below.== | ||
---- | ---- | ||
− | =Solution 1 (retrived from [[ | + | =Solution 1 (retrived from [[ECE_600_Chebyshev_Inequality|here]])= |
− | + | First we state the Chebyshev Inequality: | |
+ | Let <math class="inline">\mathbf{X}</math> be a random variable with mean <math class="inline">\mu</math> and variance <math class="inline">\sigma^{2}</math> . Then <math class="inline">\forall\epsilon>0</math> | ||
+ | |||
+ | <math class="inline">p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}</math>. | ||
+ | |||
+ | Now we prove it. | ||
+ | |||
+ | [[Image:ECE600 Note Chebyshev inequality1.jpg]] | ||
+ | |||
+ | <math class="inline">\text{Let }g_{1}\left(\mathbf{X}\right)=\mathbf{1}_{\left\{ r\in\mathbf{R}:\left|\mathbf{X}-\mu\right|\geq\epsilon\right\} }\left(\mathbf{X}\right)\text{ and }g_{2}\left(\mathbf{X}\right)=\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}</math>. | ||
+ | |||
+ | <math class="inline">\text{Let }\phi\left(\mathbf{X}\right)=g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\Longrightarrow\phi\left(\mathbf{X}\right)\geq0,\;\forall\mathbf{X}\in\mathbf{R}.</math> | ||
+ | |||
+ | <math class="inline">E\left[\phi\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)\right]-E\left[g_{1}\left(\mathbf{X}\right)\right]=\frac{\sigma^{2}}{\epsilon^{2}}-p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\text{ and }E\left[\phi\left(\mathbf{X}\right)\right]\geq0. </math> | ||
+ | |||
+ | <math class="inline">\because E\left[g_{2}\left(\mathbf{X}\right)\right]=E\left[\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}\right]=\frac{1}{\epsilon^{2}}E\left[\left(\mathbf{X}-\mu\right)^{2}\right]=\frac{\sigma^{2}}{\epsilon^{2}}.</math> | ||
+ | |||
+ | <math class="inline">\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.</math> | ||
---- | ---- | ||
− | ==Solution 2== | + | ==Solution 2 (retrived from [[ECE_600_Chebyshev_Inequality|here]])== |
+ | <math class="inline">E\left[\mathbf{X}\right]=\int_{0}^{\epsilon}xf_{\mathbf{X}}\left(x\right)dx+\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}\epsilon f_{\mathbf{X}}\left(x\right)dx=\epsilon P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right).</math> | ||
+ | |||
+ | <math class="inline">P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right)\leq\frac{E\left[\mathbf{X}\right]}{\epsilon}.</math> | ||
+ | |||
+ | <math class="inline">P\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)=P\left(\left\{ \left(\mathbf{X}-\mu\right)^{2}\geq\epsilon^{2}\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{\epsilon^{2}}.</math> | ||
+ | |||
+ | <math class="inline">\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.</math> | ||
+ | ---- | ||
+ | ==Solution 3 == | ||
Write it here. | Write it here. | ||
---- | ---- |
Revision as of 05:34, 17 July 2012
Contents
Question from ECE QE January 2001
State and prove the Tchebycheff Inequality.
Solution 1 (retrived from here)
First we state the Chebyshev Inequality: Let $ \mathbf{X} $ be a random variable with mean $ \mu $ and variance $ \sigma^{2} $ . Then $ \forall\epsilon>0 $
$ p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}} $.
Now we prove it.
$ \text{Let }g_{1}\left(\mathbf{X}\right)=\mathbf{1}_{\left\{ r\in\mathbf{R}:\left|\mathbf{X}-\mu\right|\geq\epsilon\right\} }\left(\mathbf{X}\right)\text{ and }g_{2}\left(\mathbf{X}\right)=\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}} $.
$ \text{Let }\phi\left(\mathbf{X}\right)=g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\Longrightarrow\phi\left(\mathbf{X}\right)\geq0,\;\forall\mathbf{X}\in\mathbf{R}. $
$ E\left[\phi\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)\right]-E\left[g_{1}\left(\mathbf{X}\right)\right]=\frac{\sigma^{2}}{\epsilon^{2}}-p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\text{ and }E\left[\phi\left(\mathbf{X}\right)\right]\geq0. $
$ \because E\left[g_{2}\left(\mathbf{X}\right)\right]=E\left[\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}\right]=\frac{1}{\epsilon^{2}}E\left[\left(\mathbf{X}-\mu\right)^{2}\right]=\frac{\sigma^{2}}{\epsilon^{2}}. $
$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $
Solution 2 (retrived from here)
$ E\left[\mathbf{X}\right]=\int_{0}^{\epsilon}xf_{\mathbf{X}}\left(x\right)dx+\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}\epsilon f_{\mathbf{X}}\left(x\right)dx=\epsilon P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right). $
$ P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right)\leq\frac{E\left[\mathbf{X}\right]}{\epsilon}. $
$ P\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)=P\left(\left\{ \left(\mathbf{X}-\mu\right)^{2}\geq\epsilon^{2}\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{\epsilon^{2}}. $
$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $
Solution 3
Write it here.