Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)=
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
=Question 3, Part 3, August 2011  =
+
 
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE_AC3-2011_solusion-3|3]],[[ECE-QE_AC3-2011_solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]]  
+
= Question 3, Part 3, August 2011  =
 +
 
 +
:[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE_AC3-2011_solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
 +
 
 
----
 
----
  
Line 15: Line 18:
  
 
----
 
----
Share and discuss your solutions below.
+
 
 +
The '''Fundamental Theorem of Linear Programming''' that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one.
 +
 
 
----
 
----
 +
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<math>\Rightarrow  x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3}</math>  
+
<math>\left.\begin{matrix}
 +
x_{1}+2x_{2}-x_{3}=5 \\
 +
2x_{1}+3x_{2}-x_{3}=6
 +
\end{matrix}\right\}\Rightarrow  x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3}</math>  
  
 
<math>\Rightarrow x_{2}-x_{3}=4</math>  
 
<math>\Rightarrow x_{2}-x_{3}=4</math>  
Line 37: Line 46:
 
x_{3}=0
 
x_{3}=0
 
\end{matrix}\right.</math>  
 
\end{matrix}\right.</math>  
 +
 +
<math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math>
  
 
----
 
----
Line 107: Line 118:
 
----
 
----
  
Automatic Control (AC)- Question 3, August 2011
+
Automatic Control (AC)- Question 3, August 2011  
  
Go to
+
Go to  
*Problem 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
+
*Problem 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]
+
*Problem 3: [[ECE-QE_AC3-2011_solusion-3|solutions and discussions]]
+
*Problem 4: [[ECE-QE_AC3-2011_solusion-4|solutions and discussions]]
+
*Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]]
+
  
----
+
*Problem 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]
 +
*Problem 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 +
*Problem 3: [[ECE-QE_AC3-2011_solusion-3|solutions and discussions]]
 +
*Problem 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Problem 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
  
 +
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
+
<br> [[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
  
 
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
 
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]

Revision as of 19:44, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 3, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $

maximize    − x1 − 3x2 + 4x3

subject to    x1 + 2x2x3 = 5

                   2x1 + 3x2x3 = 6

                   $ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $


The Fundamental Theorem of Linear Programming that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one.


$ \color{blue}\text{Solution 1:} $

$ \left.\begin{matrix} x_{1}+2x_{2}-x_{3}=5 \\ 2x_{1}+3x_{2}-x_{3}=6 \end{matrix}\right\}\Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $

$ \Rightarrow x_{2}-x_{3}=4 $

$ \text{It is equivalent to min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $

$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $

$ \text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9 $

$ \text{Equality is satisfied when } x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3 $

$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $

$ \color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming} $


$ \color{blue}\text{Solution 2:} $

One of the basic feasible solution is an optimal solution.
$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $

$ \text{The fist basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $

$ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ is BFS. } f_{1}=-9 $

$ \text{The second basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix} \text{ is BFS. } f_{2}=-15 $

$ \text{The third basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix} \text{ is BFS. } f_{3}=-21 $

$ \because f_{1}>f_{2}>f_{3} $

$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $


Automatic Control (AC)- Question 3, August 2011

Go to



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett