Line 1: | Line 1: | ||
− | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] | + | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)= |
− | + | =Question 3, Part 3, August 2011 = | |
+ | :[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE_AC3-2011_solusion-3|3]],[[ECE-QE_AC3-2011_solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]] | ||
---- | ---- | ||
Line 14: | Line 15: | ||
---- | ---- | ||
− | + | Share and discuss your solutions below. | |
+ | ---- | ||
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
Line 105: | Line 107: | ||
---- | ---- | ||
− | Automatic Control (AC)- Question 3, August 2011 | + | Automatic Control (AC)- Question 3, August 2011 |
+ | |||
+ | Go to | ||
+ | *Problem 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]] | ||
+ | *Problem 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]] | ||
+ | *Problem 3: [[ECE-QE_AC3-2011_solusion-3|solutions and discussions]] | ||
+ | *Problem 4: [[ECE-QE_AC3-2011_solusion-4|solutions and discussions]] | ||
+ | *Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]] | ||
---- | ---- | ||
+ | |||
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]] | ||
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]] | [[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]] |
Revision as of 04:41, 28 June 2012
ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)
Question 3, Part 3, August 2011
$ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $
maximize − x1 − 3x2 + 4x3
subject to x1 + 2x2 − x3 = 5
2x1 + 3x2 − x3 = 6
$ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $
Share and discuss your solutions below.
$ \color{blue}\text{Solution 1:} $
$ \Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $
$ \Rightarrow x_{2}-x_{3}=4 $
$ \text{It is equivalent to min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $
$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $
$ \text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9 $
$ \text{Equality is satisfied when } x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3 $
$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $
$ \color{blue}\text{Solution 2:} $
One of the basic feasible solution is an optimal solution.
$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $
$ \text{The fist basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $
$ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ is BFS. } f_{1}=-9 $
$ \text{The second basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $
$ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix} \text{ is BFS. } f_{2}=-15 $
$ \text{The third basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $
$ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix} \text{ is BFS. } f_{3}=-21 $
$ \because f_{1}>f_{2}>f_{3} $
$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $
Automatic Control (AC)- Question 3, August 2011
Go to
- Problem 1: solutions and discussions
- Problem 2: solutions and discussions
- Problem 3: solutions and discussions
- Problem 4: solutions and discussions
- Problem 5: solutions and discussions