Line 31: | Line 31: | ||
<math>l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right)</math> | <math>l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right)</math> | ||
− | <font color="#ff0000"><span style="font-size: 17px;">'''<math>=\begin{pmatrix} | + | <font color="#ff0000"><span style="font-size: 17px;">''' <math>=\begin{pmatrix} |
2x_{1}-4\\ | 2x_{1}-4\\ | ||
2x_{2}-2 | 2x_{2}-2 | ||
Line 43: | Line 43: | ||
-1\\ | -1\\ | ||
0 | 0 | ||
− | \end{pmatrix} =0</math> | + | \end{pmatrix} =0</math>''' |
− | '''</span></font> | + | </span></font> |
− | + | <math>\mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right)</math> | |
− | <math>= \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0</math><br> | + | <math>= \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0</math><br> |
<math>\text{Let } x^{*}=\begin{bmatrix} | <math>\text{Let } x^{*}=\begin{bmatrix} | ||
Line 65: | Line 65: | ||
\mu_{2}=0\\ | \mu_{2}=0\\ | ||
\mu_{3}=-4 | \mu_{3}=-4 | ||
− | \end{matrix}\right.</math> | + | \end{matrix}\right.</math> |
<math>\text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} | <math>\text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} | ||
0\\0 | 0\\0 | ||
− | \end{bmatrix} \text{satisfies the FONC for maximum.}</math> | + | \end{bmatrix} \text{satisfies the FONC for maximum.}</math> |
---- | ---- | ||
Line 120: | Line 120: | ||
<math>\color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.}</math><br> | <math>\color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.}</math><br> | ||
− | <math>\color{blue}\text{Solution 1:}</math> | + | <math>\color{blue}\text{Solution 1:}</math> |
− | + | ||
+ | <br> | ||
---- | ---- | ||
− | <math>\color{blue}\text{Solution 2:}</math> | + | <math>\color{blue}\text{Solution 2:}</math> |
− | <math>L\left ( x_{1}\mu | + | <font color="#ff0000"><span style="font-size: 17px;">'''<math>L\left ( x_{1}\mu \right )= D^{2} l \left ( x _{1}\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix}</math>'''</span></font> |
− | 2+2\mu_{1} & 0 \\ | + | |
− | 0 & 2 | + | |
− | \end{bmatrix}</math> | + | |
− | <math>\text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.}</math> | + | <math>\text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.}</math> |
− | <math>\therefore \L \left ( x^{ | + | <font color="#ff0000"><span style="font-size: 20px;">'''<math>\therefore \L \left ( x^{*} \mu ^{\ast }\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}</math> |
− | -2 & 0 \\ | + | '''</span></font> |
− | 0 & 2 | + | |
− | \end{bmatrix}</math> | + | |
− | <math>\tilde{T}\left( x^{ | + | <math>\tilde{T}\left( x^{* }\mu^{*} \right)= \left{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right}</math><br> |
− | <math>\tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i^{\ast }}> 0\right \}</math> <math>\therefore i= 2</math> | + | <math>\tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i^{\ast }}> 0\right \}</math> <math>\therefore i= 2</math> |
− | <math>\therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \}</math> | + | <math>\therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \}</math> |
<math>\left [ y_{1},y_{2} \right ]\begin{bmatrix} | <math>\left [ y_{1},y_{2} \right ]\begin{bmatrix} | ||
Line 152: | Line 147: | ||
y_{1}\\ | y_{1}\\ | ||
y_{2} | y_{2} | ||
− | \end{bmatrix} \geqslant 0 | + | \end{bmatrix} \geqslant 0</math> |
− | + | ||
− | + | ||
− | <math> | + | <math>-2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right )</math> |
− | < | + | <span class="texhtml">for ''y''<sub>1</sub> = ''y''<sub>2</sub>, is always satisfied.</span> |
− | <math>\therefore \text{ | + | <math>\therefore \text{For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0</math> |
+ | <math>\therefore \text{point } x^{*} \text{satisfy the SOSC}</math> | ||
+ | <br> | ||
---- | ---- |
Revision as of 20:58, 27 June 2012
ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011
$ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $
$ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } x_{2}- x_{1}^{2}\geq0 $
$ 2-x_{1}-x_{2}\geq0, x_{1}\geq0. $
$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $
$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $
$ \color{blue}\text{Solution 1:} $
$ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $
$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $
$ g_{3}\left( x \right) -x_{1}\leq0 $
The problem is to optimize f(x), $ \text{subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $
$ l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $
$ =\begin{pmatrix} 2x_{1}-4\\ 2x_{2}-2 \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $
$ \mu_{1} g_{1}\left( x \right)+\mu_{2} g_{2}\left( x \right)+\mu_{3} g_{3}\left( x \right) $
$ = \mu_{1} \left( x_{1}^2-x_{2} \right)+\mu_{2} \left( x_{1}+x_{2}-2 \right)+\mu_{3} \left( -x_{1} \right) =0 $
$ \text{Let } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $
$ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}= \begin{pmatrix} 0 \\ 0\end{pmatrix} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $
$ \text{As } \mu^{*}\leq 0, x^{*}\begin{bmatrix} 0\\0 \end{bmatrix} \text{satisfies the FONC for maximum.} $
$ \color{blue}\text{Solution 2:} $
$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $
$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $
$ g_{3}\left( x \right) -x_{1}\leq0 $
$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $
$ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ] $
$ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $
$ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $
$ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $
$ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $
$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $ $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}=\begin{pmatrix} 0\\0 \end{pmatrix}\\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $
$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $
$ \color{blue}\left( \text{ii} \right) \text{Does } x^{*} \text{ satisfy SOSC? Carefully justify your answer.} $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
$ L\left ( x_{1}\mu \right )= D^{2} l \left ( x _{1}\mu \right )= \begin{bmatrix} 2+2\mu_{1} & 0 \\ 0 & 2 \end{bmatrix} $
$ \text{for point } x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{, we get } \mu_{1}=-2 \text{ from KKT condition.} $
$ \therefore \L \left ( x^{*} \mu ^{\ast }\right )=\begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix} $
$ \tilde{T}\left( x^{* }\mu^{*} \right)= \left{ y:Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right} $
$ \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i^{\ast }}> 0\right \} $ $ \therefore i= 2 $
$ \therefore \tilde{T}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ y:\left [ 1,1 \right ]y= 0 \right \}= \left \{ y:y_{1}= -y_{2} \right \} $
$ \left [ y_{1},y_{2} \right ]\begin{bmatrix} -2 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1}\\ y_{2} \end{bmatrix} \geqslant 0 $
$ -2y_{1}^{2}+2y_{2}^{2}\geqslant 0\cdots \left ( 1 \right ) $
for y1 = y2, is always satisfied.
$ \therefore \text{For all } y\in T\left( x^{*} \right ) \text{, we have } y^{T}L\left ( x^{\ast },\mu ^{\ast } \right )y\geq 0 $
$ \therefore \text{point } x^{*} \text{satisfy the SOSC} $
Automatic Control (AC)- Question 3, August 2011
Problem 1: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion
Problem 2: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2
Problem 3: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3
Problem 4: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4