Line 9: | Line 9: | ||
<span class="texhtml">maximize''x''<sub>1</sub> + ''x''<sub>2</sub></span> | <span class="texhtml">maximize''x''<sub>1</sub> + ''x''<sub>2</sub></span> | ||
− | <math>\text{subject to } x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>''' <math>x_{1}+x_{2}\leq6</math>''' | + | <math>\text{subject to } x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>''' <math>x_{1}+x_{2}\leq6</math>''' |
− | <math>x_{1},-x_{2}\geq0.</math> | + | |
+ | <math>x_{1},-x_{2}\geq0.</math> | ||
===== <math>\color{blue}\text{Solution 1:}</math> ===== | ===== <math>\color{blue}\text{Solution 1:}</math> ===== | ||
− | < | + | <span class="texhtml">Get standard form for simplex method ''m''''i''''n'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span> |
− | < | + | <span class="texhtml"> subject to ''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span> |
− | < | + | <span class="texhtml">'' x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span> |
− | <math>x_{i}\geq0 i=1,2,3,4</math> | + | <math>x_{i}\geq0 i=1,2,3,4</math><br> |
Line 35: | Line 36: | ||
1 & 1 & 0 & 1 & 6 \\ | 1 & 1 & 0 & 1 & 6 \\ | ||
0 & 0 & 0 & 1 & 6 | 0 & 0 & 0 & 1 & 6 | ||
− | \end{matrix}</math> | + | \end{matrix}</math> <math>\Rightarrow |
− | + | ||
− | <math>\Rightarrow | + | |
\begin{matrix} | \begin{matrix} | ||
1 & -1 & 1 & 0 & 2\\ | 1 & -1 & 1 & 0 & 2\\ | ||
Line 48: | Line 47: | ||
0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ | 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ | ||
0 & 0 & 0 & 1 & 6 | 0 & 0 & 0 & 1 & 6 | ||
− | \end{matrix}</math> | + | \end{matrix}</math> |
+ | |||
+ | <font color="#ff0000"><span style="font-size: 17px;">''' | ||
+ | '''</span></font> | ||
+ | |||
+ | <math>\therefore \text{the optimal solution to the original problem is } x^{*}= \left[ \begin{bmatrix} 4\\ 2 \end{bmatrix} \right]</math> | ||
+ | |||
+ | <math>\text{The maximum value for } x_{2} + x_{2} − 2 \text{ is }6</math><font face="serif"><br></font> | ||
+ | <br> | ||
+ | ---- | ||
− | + | [[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]] | |
− | + | ||
− | + | ||
− | + | [[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]] |
Revision as of 11:48, 27 June 2012
ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011
$ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $
maximizex1 + x2
$ \text{subject to } x_{1}-x_{2}\leq2 $
$ x_{1}+x_{2}\leq6 $
$ x_{1},-x_{2}\geq0. $
$ \color{blue}\text{Solution 1:} $
Get standard form for simplex method m'i'n − x1 − x2
subject to x1 − x2 + x3 = 2
x1 + x2 + x4 = 6
$ x_{i}\geq0 i=1,2,3,4 $
$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $ $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $
$ \therefore \text{the optimal solution to the original problem is } x^{*}= \left[ \begin{bmatrix} 4\\ 2 \end{bmatrix} \right] $
$ \text{The maximum value for } x_{2} + x_{2} − 2 \text{ is }6 $