Line 11: | Line 11: | ||
'''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form. | '''(b)''' Determine the pdf of <math class="inline">\mathbf{Z}</math> . You can leave your answer in integral form. | ||
− | |||
---- | ---- | ||
==Share and discuss your solutions below.== | ==Share and discuss your solutions below.== |
Revision as of 08:10, 27 June 2012
Contents
Question from ECE QE CS Q1 August 2000
A RV is given by $ \mathbf{Z}=\sum_{n=0}^{8}\mathbf{X}_{n} $ where $ \mathbf{X}_{n} $ 's are i.i.d. RVs with characteristic function given by $ \Phi_{\mathbf{X}}\left(\omega\right)=\frac{1}{1-j\omega/2}. $
(a) Determine the characteristic function of $ \mathbf{Z} $ .
(b) Determine the pdf of $ \mathbf{Z} $ . You can leave your answer in integral form.
Solution 1 (retrived from here)
(a)
$ \Phi_{\mathbf{Z}}\left(\omega\right)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\sum_{n=0}^{8}\mathbf{X}_{n}}\right]=E\left[\prod_{n=0}^{8}e^{i\omega\mathbf{X}_{n}}\right]=\prod_{n=0}^{8}E\left[e^{i\omega\mathbf{X}_{n}}\right]=\left(\frac{1}{1-j\omega/2}\right)^{9}. $
(b)
$ f_{\mathbf{Z}}\left(z\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\Phi_{\mathbf{Z}}\left(\omega\right)e^{-i\omega z}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left(\frac{1}{1-j\omega/2}\right)^{9}e^{-i\omega z}d\omega. $
Solution 2
Write it here.