Line 41: | Line 41: | ||
</span></font> | </span></font> | ||
− | '''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{, }</math> </font><math>\text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math> ''' | + | '''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{, }</math> </font><math>\text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>''' |
− | <font color="#ff0000" style="font-size: 17px;">'''<math>l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x)=\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0</math | + | <font color="#ff0000" style="font-size: 17px;">'''<math>\text{FONC: } l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x)=\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0</math>'''</font><font face="serif"><br></font> |
− | < | + | <span class="texhtml">− μ<sub>1</sub>''x''<sub>1</sub> − μ<sub>2</sub>''x''<sub>2</sub> = 0 and ''x''<sub>1</sub> = 1 / 2,''x''<sub>2</sub> = 0</span> |
− | <math>\ | + | <math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math> <math>\therefore x^{*} \text{ satisfies FONC}</math> |
− | <math>\ | + | <math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x,\mu)=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math> |
+ | |||
+ | <math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right) \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right) \end{cases}</math><br> | ||
Revision as of 22:15, 26 June 2012
ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011
$ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $
$ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $
$ \text{subject to } x_{1}\geq0, x_{2}\geq0 $
$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
$ \color{blue}\text{Solution 1:} $
$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $
$ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in\Omega \left[0,\alpha_{0}\right] $
$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $
$ \color{blue}\text{Solution 2:} $
$ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $
$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $
$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $
$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $
$ \color{blue}\text{Solution 1:} $
$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $
$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $ $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $
$ \text{FONC: } l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x)=\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0 $
− μ1x1 − μ2x2 = 0 and x1 = 1 / 2,x2 = 0
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $ $ \therefore x^{*} \text{ satisfies FONC} $
$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x,\mu)=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $
$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right) \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right) \end{cases} $