Line 1: Line 1:
 
= ECE QE AC-3 August 2011 Solusion  =
 
= ECE QE AC-3 August 2011 Solusion  =
  
==== <span class="texhtml">1. (20 pts) Consider the optimization problem,</span><br>  ====
+
==== <font face="serif"><math>\text{1. (20 pts) Consider the optimization problem,}</math><br></font>  ====
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  

Revision as of 21:21, 21 June 2012

ECE QE AC-3 August 2011 Solusion

$ \text{1. (20 pts) Consider the optimization problem,} $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point$ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $

$ \color{blue}\text{Solution 2:} $

$ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if} $ $ \exists\alpha_{0} $ 

$ \text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $ 

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett