Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em;">
+
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: center; width: 70%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:center;">
<center>'''If you enjoy using this [[Collective_Table_of_Formulas|collective table of formulas]], please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea].'''</center>
+
{|
</div>
+
|-
 +
|
 +
'''This [[Collective Table of Formulas|Collective table of formulas]] is proudly sponsored'''<br> '''by the [http://www.facebook.com/hkn.beta Nice Guys of Eta Kappa Nu].''' <br><br> Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!
 +
 
 +
| &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Image:HKNlogo.jpg]]
 +
|}
 +
</div>  
  
 
{|
 
{|

Revision as of 05:24, 5 April 2012

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg
Discrete-time Fourier Transform Pairs and Properties
DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
DTFT of a complex exponential $ e^{jw_0n} \ $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
(info) DTFT of a rectangular window $ w[n]= \ $ $ \text{add formula here} \ $
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $
$ (n+1)a^{n} u[n], |a|<1 \ $ $ \frac{1}{(1-ae^{-j\omega})^2} \ $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $
$ \cos\left(\omega _0 n\right) \ $ $ \pi \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)+\delta(\omega+\omega_0-2\pi k)) $
$ \cos\left(\omega _0 n\right) \ $ $ \frac{\pi}{j} \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)-\delta(\omega+\omega_0-2\pi k)) $
$ 1 \ $ $ 2\pi\sum^{\infty}_{k=-\infty}\delta(\omega-2\pi k) $
DTFT of a Periodic Square Wave

$ \left\{\begin{array}{ll}1, & |n|<N_1,\\ 0, & N_1<|n|\leq\frac{N}{2}\end{array} \right. \text{ and } x[n+N]=x[n] $

$ 2\pi\sum^{\infty}_{k=-\infty}a_k\delta(\omega-\frac{2\pi k}{N}) $
$ \sum^{\infty}_{k=-\infty}\delta[n-kN] $ $ \frac{2\pi}{N}\sum^{\infty}_{k=-\infty}\delta(\omega -\frac{2\pi k}{N}) $
$ \delta [n] \ $ $ 1 \ $
$ u[n] \ $ $ \frac{1}{1-e^{-j\omega}}+\sum^{\infty}_{k=-\infty}\pi\delta(\omega-2\pi k) $
$ \delta[n - n_0] \ $ $ e^{-j\omega n_0} $
$ (n + 1)a^n u[n], \quad |a| < 1 $ $ \frac{1}{(1-ae^{-j\omega})^{2}} $
DT Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
multiplication property $ x[n]y[n] \ $ $ \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x[n]*y[n] \ $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x[-n] $ $ \ X(-\omega) $
Differentiation in frequency $ \ nx[n] $ $ \ j\frac{d}{d\omega}X(\omega) $
Linearity $ ax[n]+by[n] \ $ $ aX(\omega)+bY(\omega) \ $
Time Shifting $ x[n - n_0] \ $ $ e^{-j\omega n_0}X(\omega) $
Frequency Shifting $ e^{j\omega_0 n}x[n] $ $ X(\omega - \omega_0) \ $
Conjugation $ x^* [n] \ $ $ X^* (-\omega) \ $
Time Expansion $ x_{(k)}[n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right. $ $ X(k\omega) \ $
Differentiating in Time $ x[n] - x[n - 1] \ $ $ (1 - e^{-j\omega}) X (\omega) \ $
Accumulation $ \sum^{n}_{k=-\infty} x[k] $ $ \frac{1}{1-e^{-j\omega}}X(\omega) $
Symmetry $ x[n] \ \text{ real and even} \ $ $ X(\omega) \ \text{ real and even} \ $
$ x[n] \ \text{ real and odd} \ $ $ X(\omega) \ \text{ purely imaginary and odd} \ $
Other DT Fourier Transform Properties
Parseval's relation $ \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = \frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2d\omega $



Go to Relevant Course Page: ECE 301

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn