Line 56: Line 56:
 
== Adjacent Matrix  ==
 
== Adjacent Matrix  ==
  
A is a n x n matrix Def: the (i,j) minor of A is the submatrix of A obtained by erasing row i and column j of A. there are&nbsp;<span class="texhtml">''n''<sup>2</sup></span>&nbsp;submissions.
+
A is a n x n matrix.
 +
 
 +
Def: the (i,j) minor of A is the submatrix of A obtained by erasing row i and column j of A. there are&nbsp;<span class="texhtml">''n''<sup>2</sup></span>&nbsp;submissions.  
 +
 
 +
To each Mij we associate the number
 +
 
 +
Aij =&nbsp;<span class="texhtml">( − 1)<sup>''i'' + ''j''</sup> * ''d''''e''''t''(''M''''i''''j'')</span>
 +
 
 +
Finally let C be the "cofactor matrix" with entries Cij = Aij.
 +
 
 +
Note: The cofactor or adjacent matrix does not have the same order of entries as A.'''<br>'''
 +
 
 +
Example 1:
 +
 
 +
Normal Matrix &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Adjacent Matrix
 +
 
 +
&nbsp;<math>\left(\begin{array}{cccc}A11&A12&A13\\A21&A22&A23\\A31&A32&A33\end{array}\right)</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left(\begin{array}{cccc}A11&A21&A31\\A12&A22&A32\\A13&A23&A33\end{array}\right)</math>
 +
 
 +
Example:<br>
 +
 
 +
<math>A= \left(\begin{array}{cccc}1&0&-1\\1&1&1\\2&1&2\end{array}\right)</math>
 +
 
 +
<math>M11=\left(\begin{array}{cccc}1&1\\1&2\end{array}\right)</math>&nbsp;

Revision as of 08:35, 16 December 2011


Inverse of a Matrix


Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that

A B = I n = B A

Then B is called the inverse matrix of A.


Conditions

A n x n is invertible (non-singular) if: 
  • Ax=0 has a unique solution
  • There is a B matrix such that A B = In
  • Ax=b has a unique solution for any b---x=A − 1



Properties

  • (AB) − 1 = B − 1A − 1
  • (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
  • (A − 1) − 1 = A
  • (A − 1)T = (AT) − 1



Calculations

  • Steps:

1) Put the original matrix and in the left side the corresponding identity matrix (In) in the right side.

2) You compute rref in the left side, keep in mind that the operations also have an effect on the right side.

3) After you have a reduced row echelon form in the left side, the matrix that is left on the right side is the Inverse of the original matrix. 

$ \left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right) $ ----->$ \left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right) $------>$ \left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right) $ ----> $ \left(\begin{array}{cccc} 1 & 0 || -5/2 & 3/2 \\0&1 || 2 & -1 \end{array}\right) $


$ A^{-1}=\left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right) $





Note: Calculating the Reuduced Row echelon form for a square matrix with n >5 can get complicated and if you get the Reduced row echelon form wrong by consequence you get the Inverse wrong. In some cases it is better to use the adjacent matrix as I will show on the next section.

Adjacent Matrix

A is a n x n matrix.

Def: the (i,j) minor of A is the submatrix of A obtained by erasing row i and column j of A. there are n2 submissions.

To each Mij we associate the number

Aij = ( − 1)i + j * d'e't(M'i'j)

Finally let C be the "cofactor matrix" with entries Cij = Aij.

Note: The cofactor or adjacent matrix does not have the same order of entries as A.

Example 1:

Normal Matrix                                           Adjacent Matrix

 $ \left(\begin{array}{cccc}A11&A12&A13\\A21&A22&A23\\A31&A32&A33\end{array}\right) $                   $ \left(\begin{array}{cccc}A11&A21&A31\\A12&A22&A32\\A13&A23&A33\end{array}\right) $

Example:

$ A= \left(\begin{array}{cccc}1&0&-1\\1&1&1\\2&1&2\end{array}\right) $

$ M11=\left(\begin{array}{cccc}1&1\\1&2\end{array}\right) $ 

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang