Line 36: Line 36:
 
== Calculations  ==
 
== Calculations  ==
  
<math>\left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right)</math> -----&gt;<math>\left(\begin{array}{cccc}  2 & 3 | 1  & 0  \\  0 & -1    |  -2  &  1 \end{array}\right)</math>------&gt;<math>\left(\begin{array}{cccc}  2 & 0 | -5  & 3  \\  0 & -1    |  -2  &  1 \end{array}\right)</math> ----&gt; <math>\left(\begin{array}{cccc}  1 & 0    |   -5/2  &  3/2  \\ 0 & 1    |  2  & -1 \end{array}\right)</math>  
+
<math>\left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right)</math> -----&gt;<math>\left(\begin{array}{cccc}  2 & 3 | 1  & 0  \\  0 & -1    |  -2  &  1 \end{array}\right)</math>------&gt;<math>\left(\begin{array}{cccc}  2 & 0 | -5  & 3  \\  0 & -1    |  -2  &  1 \end{array}\right)</math> ----&gt; <math>\left(\begin{array}{cccc}  1 & 0    |-5/2  &  3/2  \\0&1    ||  2  & -1 \end{array}\right)</math>  
  
 
<br>  
 
<br>  
Line 44: Line 44:
 
<br> <br><br><br>  
 
<br> <br><br><br>  
  
Note: Calculating a Reuduced Row echelon form for a square matrix which n &gt;5 can get complicated and if you get the Reduced row echelon form by consequence you get the Inverse wrong. In some cases
+
Note: Calculating the Reuduced Row echelon form for a square matrix with n &gt;5 can get complicated and if you get the Reduced row echelon form wrong by consequence you get the Inverse wrong. In some cases it is better to use the adjacent matrix as I will show on the next section.
 +
 
 +
== Adjacent Matrix ==

Revision as of 06:06, 16 December 2011


Inverse of a Matrix


Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that

A B = I n = B A

Then B is called the inverse matrix of A.


Conditions

A n x n is invertible (non-singular) if: 
  • Ax=0 has a unique solution
  • There is a B matrix such that A B = In
  • Ax=b has a unique solution for any b---x=A − 1



Properties

  • (AB) − 1 = B − 1A − 1
  • (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
  • (A − 1) − 1 = A
  • (A − 1)T = (AT) − 1



Calculations

$ \left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right) $ ----->$ \left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right) $------>$ \left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right) $ ----> $ \left(\begin{array}{cccc} 1 & 0 || -5/2 & 3/2 \\0&1 || 2 & -1 \end{array}\right) $


$ A^{-1}=\left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right) $





Note: Calculating the Reuduced Row echelon form for a square matrix with n >5 can get complicated and if you get the Reduced row echelon form wrong by consequence you get the Inverse wrong. In some cases it is better to use the adjacent matrix as I will show on the next section.

Adjacent Matrix

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett