Line 5: | Line 5: | ||
A <u>vector transformation </u>is a function that is performed on a vector. (i.e. f:X->Y) | A <u>vector transformation </u>is a function that is performed on a vector. (i.e. f:X->Y) | ||
− | A vector transformation can transform a vector from R<sup>n</sup> to R<sup>m</sup> | + | A <u>vector transformation</u> can transform a vector from R<sup>n</sup> to R<sup>m</sup> |
<math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math> | <math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math> | ||
− | Where <math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math> and <math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math> | + | <br>Where <math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math> and <math>Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right)</math> |
<br> | <br> | ||
Line 16: | Line 16: | ||
<math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math> | <math>f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right)</math> | ||
+ | |||
+ | <br> <math>X=\left(\begin{array}{c}-1\\4\end{array}\right)</math> | ||
<br> | <br> |
Revision as of 15:54, 14 December 2011
Linear Transformations and Isomorphisms
Vector Transformations:
A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)
A vector transformation can transform a vector from Rn to Rm
$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Where $ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $ and $ Y = \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_m\end{array}\right) $
Examples:
$ f(\left(\begin{array}{c}x_1\\x_2\end{array}\right))= \left(\begin{array}{c}-x_1\\x_1 - x_2\\x_1\end{array}\right) $
$ X=\left(\begin{array}{c}-1\\4\end{array}\right) $
Linear Transformations:
A function L:V->W is a linear transformation of V to W if the following are true:
(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)
In other words, a linear transformation is a vector transformation that also meets (1) and (2).
$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $