Line 10: Line 10:
 
<math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math>
 
<math>X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right)</math>
 
and
 
and
<math> Y = \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right)</math>
+
<math>Y = \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right)</math>
  
  

Revision as of 15:39, 14 December 2011

Linear Transformations and Isomorphisms

Vector Transformations:

A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)

$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right) $

Where $ X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) $ and $ Y = \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right) $


Linear Transformations:

A function L:V->W is a linear transformation of V to W if the following are true:

(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)

In other words, a linear transformation is a vector transformation that also meets (1) and (2).




$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett