Line 26: Line 26:
  
 
*<span class="texhtml">(AB)<sup> − 1</sup></span>&nbsp;=&nbsp;<span class="texhtml">''B''<sup> − 1</sup>''A''<sup> − 1</sup></span>  
 
*<span class="texhtml">(AB)<sup> − 1</sup></span>&nbsp;=&nbsp;<span class="texhtml">''B''<sup> − 1</sup>''A''<sup> − 1</sup></span>  
*(A1 A2.....Ar)<span class="texhtml"><sup> − 1</sup></span>=<span class="texhtml">''A''r'''''<b><sup> − 1</sup></b>'''''A''''''''r'' − 1<sup> − 1</sup>...''A''1<sup> − 1</sup></span>  
+
*(A1 A2.....Ar)<span class="texhtml"><sup> − 1</sup></span>=<span class="texhtml">''A''r'''''<b><sup> − 1</sup></b>'''''A''''''''r'' − 1<sup> − 1</sup>...''A''1<sup> − 1</sup>'''</span>  
 
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup> − 1</sup> = ''A''</span><span class="texhtml"><sup></sup></span>  
 
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup> − 1</sup> = ''A''</span><span class="texhtml"><sup></sup></span>  
 
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup>''T''</sup> = (''A''<sup>''T''</sup>)<sup> − 1</sup></span>
 
*<span class="texhtml">(''A''<sup> − 1</sup>)<sup>''T''</sup> = (''A''<sup>''T''</sup>)<sup> − 1</sup></span>
  
 +
<br>
  
 +
Calculations
  
Calculations<br> <br> <br> <br> <math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>
+
<math>\left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right)</math> -----&gt;<math>\left(\begin{array}{cccc}  2 & 3 | 1  & 0  \\  0 & -1    |  -2  &  1 \end{array}\right)</math>------&gt;<math>\left(\begin{array}{cccc} 2 & 0 | -5  & 3  \\  0 & -1   |  -2  & 1 \end{array}\right)</math> ----&gt; <math>\left(\begin{array}{cccc}  1 & 0    | -5/2 & 3/2  \\  0 & 1    |  2  & -1 \end{array}\right)</math>
 +
 
 +
<br>
 +
 
 +
<span class="texhtml">''A''<sup> − 1</sup> = <math>\left(\begin{array}{cccc}  -5/2 & 3/2  \\  2 & -1    \end{array}\right)</math></span><br> <br><br><br>

Revision as of 13:33, 13 December 2011


Inverse of a Matrix


Definition: Let A be a square matrix of order n x n(square matrix). If there exists a matrix B such that

A B = I n = B A

Then B is called the inverse matrix of A.


Conditions

A n x n is invertible (non-singular) if: 
  • Ax=0 has a unique solution
  • There is a B matrix such that A B = In
  • Ax=b has a unique solution for any b---x=A − 1



Properties

  • (AB) − 1 = B − 1A − 1
  • (A1 A2.....Ar) − 1=Ar − 1A'''r − 1 − 1...A1 − 1
  • (A − 1) − 1 = A
  • (A − 1)T = (AT) − 1


Calculations

$ \left(\begin{array}{cccc}2&3|1&0\\4&5|0&1\end{array}\right) $ ----->$ \left(\begin{array}{cccc} 2 & 3 | 1 & 0 \\ 0 & -1 | -2 & 1 \end{array}\right) $------>$ \left(\begin{array}{cccc} 2 & 0 | -5 & 3 \\ 0 & -1 | -2 & 1 \end{array}\right) $ ----> $ \left(\begin{array}{cccc} 1 & 0 | -5/2 & 3/2 \\ 0 & 1 | 2 & -1 \end{array}\right) $


A − 1 = $ \left(\begin{array}{cccc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right) $



Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn