Line 6: | Line 6: | ||
'''Note**''' The above definition not only applies to a finite set of vectors, but also to an infinite set of vectors in a vector space. | '''Note**''' The above definition not only applies to a finite set of vectors, but also to an infinite set of vectors in a vector space. | ||
===Example 1=== | ===Example 1=== | ||
− | Let <math>V = R^3</math>. The vectors <math>[1,0,0], [0,1,0], [0,0,1]</math> | + | Let <math>V = R^3</math>. The vectors <math>[1,0,0], [0,1,0], [0,0,1]</math> form a basis for <math>R^3</math>, called the '''natural basis''' or '''standard basis''', for <math>R^3</math>. |
Revision as of 02:27, 10 December 2011
Basis
Definition: The vectors v1, v2,..., vk in a vector space V are said to form a basis for V if (a) v1, v2,..., vk span V and (b) v1, v2,..., vk are linearly independent. Note* If v1, v2,..., vk form a basis for a vector space V, then they must be distinct and nonzero. Note** The above definition not only applies to a finite set of vectors, but also to an infinite set of vectors in a vector space.
Example 1
Let $ V = R^3 $. The vectors $ [1,0,0], [0,1,0], [0,0,1] $ form a basis for $ R^3 $, called the natural basis or standard basis, for $ R^3 $.