Line 1: | Line 1: | ||
− | == Determinants == | + | === Determinants === |
− | + | ---- | |
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | ''<u>'''Introduction:'''</u>''<u></u''<u</u>'''''<u></u>''' | ||
+ | |||
+ | <br> | ||
+ | |||
+ | If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)''' | ||
For an instance we have a 2 x 2 matrix denominated A, therefore: | For an instance we have a 2 x 2 matrix denominated A, therefore: | ||
Line 17: | Line 26: | ||
<br> | <br> | ||
− | <math>det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right)</math> | + | <math>det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right)</math> |
= ('''a<sub>11</sub> * a<sub>22)</sub> - (a<sub>12</sub> * a'''<sub>'''21'''</sub><sub>''' '''</sub>) | = ('''a<sub>11</sub> * a<sub>22)</sub> - (a<sub>12</sub> * a'''<sub>'''21'''</sub><sub>''' '''</sub>) | ||
Line 27: | Line 36: | ||
<br> | <br> | ||
− | <math>det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right)</math> | + | <math>det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right)</math> |
− | = '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>) ''' | + | = '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>) ''' |
---- | ---- | ||
− | |||
+ | ---- | ||
+ | |||
+ | <u>'''''Properties of Determinants:'''''</u> | ||
+ | |||
+ | |||
+ | |||
+ | <u>Theorem 1</u>: Let A be an n x n matrix then; '''det(A) = det(A<sup>t</sup>) | ||
+ | <u></u><u></<u></u><u><u></u><u></u<u></u<u></u><strike></strike><sub></sub><sub></sub><u>Theorem 2:</u> If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; '''det(B) = - det(A) ''' | ||
+ | <u>Theorem 3:</u> If two rows (columns) of A are equal, then; '''det(A) = 0''' | ||
− | + | <u>Theorem 4: </u>If a row (column) of A consists entirely of zeros, then; '''det(A) = 0''' | |
− | <br> | + | <u>Theorem 5:</u> If B obtained from A by multiplying a row (column) of A by a real number k, then;'''det(B) = ''k''det(A) ''' |
+ | <u>Theorem 6:</u> If B = [b<sub>ij</sub>] is obained from A = [a<sub>ij</sub>] by adding to each element of the ''r''th row (column) of A, ''k'' times the corresponding element of the ''s''th row (column), ''r'' not equal ''s'', of A, then; '''det(B) = det(A)''' | ||
+ | <u></u<u>Theorem 7:</u> If a matrix A = [a<sub>ij</sub>] is upper (lower) triangular, then; det(A) = a<sub>11</sub>*a<sub>12</sub>...a<sub>nn </sub>; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal. <br> |
Revision as of 15:23, 7 December 2011
Determinants
Introduction:</u<u
If A is a square matrix then the determinant function is denoted by det and det(A)
For an instance we have a 2 x 2 matrix denominated A, therefore:
det(A) = [a11 , a12 ; a21 , a22 ]
As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:
The determinant function for a 2 x 2 matrix is:
$ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $
= (a11 * a22) - (a12 * a21 )
The determinant function for a 3 x 3 matrix is:
$ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $
= (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31)
Properties of Determinants:
Theorem 1: Let A be an n x n matrix then; det(A) = det(At)
</<u><u></u<u></u<u>Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A)
Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0
Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0
Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)
Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A)
</u<u>Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.