Line 20: | Line 20: | ||
= '''a<sub>11</sub> * a<sub>22</sub> - a<sub>12</sub> * a'''<sub>'''21'''</sub> | = '''a<sub>11</sub> * a<sub>22</sub> - a<sub>12</sub> * a'''<sub>'''21'''</sub> | ||
+ | |||
+ | <sub</sub><math><math>\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right)</math></math> | ||
| | ||
Line 33: | Line 35: | ||
| | ||
− | + | <br> |
Revision as of 14:48, 7 December 2011
Determinants
If A is a square matrix then the determinant function is denoted by det and det(A)
For an instance we have a 2 x 2 matrix denominated A, therefore:
det(A) = [a11 , a12 ; a21 , a22 ]
As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:
The determinant function for a 2 x 2 matrix is:
det(A) = [a11 , a12 ; a21 , a22]
= a11 * a22 - a12 * a21
<sub</sub>$ <math>\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $</math>
The determinant function for a 3 x 3 matrix is:
det(A) = [a11 , a12, a13 ; a21 , a22 , a23 ; a31 , a32 , a33]
= (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31)