Line 4: | Line 4: | ||
==Question == | ==Question == | ||
+ | a) | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | y[m,n] =& -\frac{1}{8}x[m+1,n-1] + \frac{1}{2}x[m,n-1] - \frac{1}{8}x[m-1,n-1] \\ | ||
+ | & -\frac{1}{4}x[m+1,n] + x[m,n] -\frac{1}{4}x[m,n-1] \\ | ||
+ | & -\frac{1}{8}x[m+1,n+1] + \frac{1}{2}x[m,n+1] -\frac{1}{8}x[m-1,n+1] | ||
+ | \end{align}</math> | ||
+ | b) Yes. The coefficient matrix of h[m,n] can be written as product of two vectors. | ||
+ | <math> | ||
+ | \begin{pmatrix} | ||
+ | -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ | ||
+ | -\frac{1}{4} & 1 & -\frac{1}{4} \\ | ||
+ | -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} | ||
+ | \end{pmatrix} = | ||
+ | \begin{pmatrix} | ||
+ | \frac{1}{2} \\ | ||
+ | 1 \\ | ||
+ | \frac{1}{2} | ||
+ | \end{pmatrix} \cdot | ||
+ | \begin{pmatrix} | ||
+ | -\frac{1}{4} & 1 & -\frac{1}{4} | ||
+ | \end{pmatrix} | ||
+ | </math> | ||
+ | Therefore the filter can be separate into two 1-D filters. | ||
+ | |||
+ | <math>h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1]</math> | ||
+ | |||
+ | <math>h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1]</math> | ||
---- | ---- | ||
Revision as of 11:50, 4 December 2011
Homework 8, ECE438, Fall 2011, Prof. Boutin
Question
a)
$ \begin{align} y[m,n] =& -\frac{1}{8}x[m+1,n-1] + \frac{1}{2}x[m,n-1] - \frac{1}{8}x[m-1,n-1] \\ & -\frac{1}{4}x[m+1,n] + x[m,n] -\frac{1}{4}x[m,n-1] \\ & -\frac{1}{8}x[m+1,n+1] + \frac{1}{2}x[m,n+1] -\frac{1}{8}x[m-1,n+1] \end{align} $
b) Yes. The coefficient matrix of h[m,n] can be written as product of two vectors.
$ \begin{pmatrix} -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ -\frac{1}{4} & 1 & -\frac{1}{4} \\ -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{4} & 1 & -\frac{1}{4} \end{pmatrix} $
Therefore the filter can be separate into two 1-D filters.
$ h_1[m] = -\frac{1}{4}\delta[m+1] + \delta[m] -\frac{1}{4}\delta[m-1] $
$ h_2[n] = \frac{1}{2}\delta[n+1] + \delta[n] +\frac{1}{2}\delta[n-1] $
Back to Homework 8
Back to ECE 438 Fall 2011