Line 11: Line 11:
 
----
 
----
 
Some pages discussing or using Discrete Fourier Transform
 
Some pages discussing or using Discrete Fourier Transform
 +
*[[My_use_for_the_DFT!|Digital Signal Processing Project by A. Kumar using DFT]]
 
*[[Student_summary_Discrete_Fourier_transform_ECE438F09|A summary page about the DFT written by a student]] from [[ECE438]]
 
*[[Student_summary_Discrete_Fourier_transform_ECE438F09|A summary page about the DFT written by a student]] from [[ECE438]]
 
*[[Notes_on_Discrete_Fourier_Transform|Course notes on DFT]]
 
*[[Notes_on_Discrete_Fourier_Transform|Course notes on DFT]]

Latest revision as of 12:25, 2 December 2011

Discrete Fourier Transform

Definition: let x[n] be a discrete-time signal with Period N. Then the Discrete Fourier Transform X[k] of x[n] is the discrete-time signal defined by

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N}. $

Conversely, the Inverse Discrete Fourier transform is

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $


Some pages discussing or using Discrete Fourier Transform

Click here to view all the pages in the discrete Fourier transform category.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn