Line 27: Line 27:
  
 
:<span style="color:green">Instructor's comment: This approach is correct, but it may not be obvious to other students reading the solution how you obtain the last expression from the previous line. Can somebody else clarify? -pm </span>
 
:<span style="color:green">Instructor's comment: This approach is correct, but it may not be obvious to other students reading the solution how you obtain the last expression from the previous line. Can somebody else clarify? -pm </span>
 +
 +
 +
<math>
 +
\begin{align}
 +
F [u,v] &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)}  \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\
 +
&= \sum_{m=-\infty}^{\infty} \left( \delta[n+1] + delta[n] + delta[n-1]  \right) e^{-j(mu)}  \sum_{n=-\infty}^{\infty} \left(  \delta[n] + delta[n-1] + delta[n-2] \right)e^{-j(nv)}\\
 +
&_{by. looking. up. in. table. or. compute. shifted. delta. function's. DFT, on. can. get}\\
 +
&= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\
 +
\end{align}</math>
 +
 +
--[[User:Xiao1|Xiao1]] 13:12, 25 November 2011 (UTC)
 +
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 08:12, 25 November 2011

Practice Problem on Discrete-space Fourier transform computation

Compute the discrete-space Fourier transform of the following signal:

$ f[m,n]= \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right)e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $

--Xiao1 23:03, 19 November 2011 (UTC)

Instructor's comment: This approach is correct, but it may not be obvious to other students reading the solution how you obtain the last expression from the previous line. Can somebody else clarify? -pm


$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( \delta[n+1] + delta[n] + delta[n-1] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( \delta[n] + delta[n-1] + delta[n-2] \right)e^{-j(nv)}\\ &_{by. looking. up. in. table. or. compute. shifted. delta. function's. DFT, on. can. get}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $

--Xiao1 13:12, 25 November 2011 (UTC)

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

EISL lab graduate

Mu Qiao