(New page: Decision Rule: A map from values of x to Ho or H1 if x E R, say H1 else if x does not contain R say Ho Max-likelihood Rule: Pick hypothesis that maxes conditional PDF ML Rule: say H1 i...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:ECE302Fall2008_ProfSanghavi]] | ||
+ | [[Category:probabilities]] | ||
+ | [[Category:ECE302]] | ||
+ | =Binary Hypothesis Testing= | ||
+ | |||
Decision Rule: A map from values of x to Ho or H1 | Decision Rule: A map from values of x to Ho or H1 | ||
if x E R, say H1 | if x E R, say H1 | ||
Line 18: | Line 23: | ||
Probability of Type I : Pr(x E R|H0) | Probability of Type I : Pr(x E R|H0) | ||
Probablitiy of Type II: Pr(X E Rc|H1) | Probablitiy of Type II: Pr(X E Rc|H1) | ||
+ | ---- | ||
+ | [[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]] |
Latest revision as of 12:43, 22 November 2011
Binary Hypothesis Testing
Decision Rule: A map from values of x to Ho or H1 if x E R, say H1 else if x does not contain R say Ho
Max-likelihood Rule:
Pick hypothesis that maxes conditional PDF
ML Rule: say H1 if fx|theta(x|theta1) > fx|theta0)
H0 if fx|theta(x|theta1) <= fx|theta(theta|theta0)
Rml = {X such that fx|theta(x|theta1) > fx|theta(x|theta0}
Type I : Say H1 when truth is Ho Type II: say H0 when truth is H1
Probability of Type I : Pr(x E R|H0) Probablitiy of Type II: Pr(X E Rc|H1)