(New page: Category:ECE438Fall2011Boutin Category:homework Category:digital signal processing Category:digital image processing Category:ECE438 =Homework 8, ECE438, Fall 201...) |
|||
Line 29: | Line 29: | ||
b) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)? | b) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)? | ||
+ | |||
<math>g[m,n]: | <math>g[m,n]: | ||
\begin{array}{ccccccccccc} | \begin{array}{ccccccccccc} |
Revision as of 09:42, 18 November 2011
Homework 8, ECE438, Fall 2011, Prof. Boutin
Due Wednesday November 30, 2011 (in class)
Question
Consider the following FIR filter:
$ h[m,n]: \begin{array}{cccc} & m=-1 & m=0 & m=1 \\ n=1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ n=0&-\frac{1}{4} & 1 & -\frac{1}{4} \\ n=-1&-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{array} $
a) Write a difference equation that can be used to implement this filter.
b) Is this filter separable? Answer yes/no and justify your answer.
c) Compute the CSFT H(u,v) of this filter. Sketch the plot of H(u,0). Sketch the plot of H(0,v).
b) What is the output image when this filter is applied to the following image (using symmetric boundary conditions)?
$ g[m,n]: \begin{array}{ccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ \end{array} $
Discussion
Write your questions/comments here.