Line 25: Line 25:
 
=\frac{1}{2}( \pi\sum_{l=-\infty}^{+\infty}\delta(w-\frac{2\pi}{500}-2\pi l) + \pi\sum_{l=-          \infty}^{+\infty}\delta(w+\frac{2\pi}{500}-2\pi l) )
 
=\frac{1}{2}( \pi\sum_{l=-\infty}^{+\infty}\delta(w-\frac{2\pi}{500}-2\pi l) + \pi\sum_{l=-          \infty}^{+\infty}\delta(w+\frac{2\pi}{500}-2\pi l) )
 
</math>
 
</math>
 
+
:<span style="color:red">Instructor's comment: You need to justify this step (i.e. the previous equality). -pm</span>
 
<math>
 
<math>
 
=\frac{\pi}{2} \sum_{l=-\infty}^{+\infty}[ \delta(w-\frac{2\pi}{500}-2\pi l)+\delta(w+\frac{2\pi}{500}-2\pi l) ]
 
=\frac{\pi}{2} \sum_{l=-\infty}^{+\infty}[ \delta(w-\frac{2\pi}{500}-2\pi l)+\delta(w+\frac{2\pi}{500}-2\pi l) ]
Line 31: Line 31:
  
 
DTFT f(w) is periodic funtion, just need to include one period to be sufficient
 
DTFT f(w) is periodic funtion, just need to include one period to be sufficient
 +
:<span style="color:green">Instructor's comment: Correct, but do not write your answer in such a way that it looks like the FT is zero outside of one period. -pm</span>
  
 
===Answer 2===
 
===Answer 2===
Line 42: Line 43:
 
</math>
 
</math>
  
In order for the input x[n] to have such a value,
+
In order for the input x[n] to have such a value, <span style="color:red">(Please justify! -pm)</span>
  
 
<math> \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500})
 
<math> \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500})
Line 54: Line 55:
 
</math>
 
</math>
  
 
+
:<span style="color:red">Instructor's comment: Obviously, the previous line contains a mistake (missing a cosine). -pm)</span>
  
 
<math> \mathcal{X} (\omega) = \pi (\delta(\omega - \frac{2\pi}{500}) + \delta(\omega + \frac{2\pi}{500}))
 
<math> \mathcal{X} (\omega) = \pi (\delta(\omega - \frac{2\pi}{500}) + \delta(\omega + \frac{2\pi}{500}))
 
</math>
 
</math>
  
 +
:<span style="color:red">Instructor's comment: You would get close to zero points for this answer, because a) it is not periodic, b) it is just "plugged in" without justification. -pm  </span>
  
  
Line 76: Line 78:
  
 
<math>\begin{align}\mathcal{F}[x[n]] = 2\pi * \frac{1}{2} [\delta(\omega - \frac{2\pi}{500}n) + \delta(\omega + \frac{2\pi}{500}n)] \end{align}</math>
 
<math>\begin{align}\mathcal{F}[x[n]] = 2\pi * \frac{1}{2} [\delta(\omega - \frac{2\pi}{500}n) + \delta(\omega + \frac{2\pi}{500}n)] \end{align}</math>
 +
 +
:<span style="color:red">Instructor's comment: What about other values of omega? Also, be careful not to confuse the convolution symbol (*) with a multiplication.  -pm  </span>
  
 
===Answer 5===
 
===Answer 5===
Line 85: Line 89:
 
<math> F[x[n]] = \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500})
 
<math> F[x[n]] = \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500})
 
</math> repp'ed every <math>2\pi</math>
 
</math> repp'ed every <math>2\pi</math>
 +
:<span style="color:red">Instructor's comment: And the justification for this last step is ???  -pm  </span>
  
 
===Answer 6===
 
===Answer 6===

Revision as of 07:30, 16 November 2011

Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \cos \left( \frac{2 \pi }{500} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal{F}(x[n]) = \mathcal{F}(cos(\frac{2\pi}{500}n)) = \mathcal{F}(\frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2}) =\frac{1}{2}( \mathcal{F}(e^{j\frac{2\pi}{500}n})+\mathcal{F}(e^{-j\frac{2\pi}{500}n})) $

$ =\frac{1}{2}( \pi\sum_{l=-\infty}^{+\infty}\delta(w-\frac{2\pi}{500}-2\pi l) + \pi\sum_{l=- \infty}^{+\infty}\delta(w+\frac{2\pi}{500}-2\pi l) ) $

Instructor's comment: You need to justify this step (i.e. the previous equality). -pm

$ =\frac{\pi}{2} \sum_{l=-\infty}^{+\infty}[ \delta(w-\frac{2\pi}{500}-2\pi l)+\delta(w+\frac{2\pi}{500}-2\pi l) ] $

DTFT f(w) is periodic funtion, just need to include one period to be sufficient

Instructor's comment: Correct, but do not write your answer in such a way that it looks like the FT is zero outside of one period. -pm

Answer 2

$ x[n] = \int_{-\pi}^{\pi} \mathcal{X} (w)e^{j\omega n} dw $

The input x[n] can can be written in the exponential form.

$ x[n] = cos(\frac{2\pi}{500}n) = \frac{e^{j\frac{2\pi}{500}n} + e^{-j\frac{2\pi}{500}n}}{2} $

In order for the input x[n] to have such a value, (Please justify! -pm)

$ \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500}) $


Answer 3

$ x[n] = \frac{2\pi}{500}n = \frac{e^{j\frac{2\pi}{500}n}}{2}+\frac{e^{-j\frac{2\pi}{500}n}}{2} $

Instructor's comment: Obviously, the previous line contains a mistake (missing a cosine). -pm)

$ \mathcal{X} (\omega) = \pi (\delta(\omega - \frac{2\pi}{500}) + \delta(\omega + \frac{2\pi}{500})) $

Instructor's comment: You would get close to zero points for this answer, because a) it is not periodic, b) it is just "plugged in" without justification. -pm


Answer 4

$ \begin{align} x[n]= \cos \left( \frac{2 \pi }{500} n \right) \\ = \frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2} \end{align} $

$ 0 < \frac{2\pi}{500}n < \pi $

$ -\pi < -\frac{2\pi}{500}n < \pi $

consider $ -\pi < \omega < \pi $

$ \begin{align}\mathcal{F}[x[n]] = 2\pi * \frac{1}{2} [\delta(\omega - \frac{2\pi}{500}n) + \delta(\omega + \frac{2\pi}{500}n)] \end{align} $

Instructor's comment: What about other values of omega? Also, be careful not to confuse the convolution symbol (*) with a multiplication. -pm

Answer 5

$ \begin{align} x[n]= \cos \left( \frac{2 \pi }{500} n \right) = \frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2} \end{align} $

$ F[x[n]] = \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500}) $ repp'ed every $ 2\pi $

Instructor's comment: And the justification for this last step is ??? -pm

Answer 6

$ x[n]= \cos \left( \frac{2 \pi }{500} n \right)=\frac{1}{2}(e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}) $

$ \mathcal{X} (\omega) = rep_{2\pi}\left[\pi \delta \left(\omega - \frac{2\pi}{500} \right) + \pi \delta \left(\omega + \frac{2\pi}{500} \right) \right] $

Answer 7

$ \begin{align} x[n]= \cos \left( \frac{2 \pi }{500} n \right) = \frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2} \end{align} $

$ F[x[n]] = \mathcal{X} (\omega) = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500}) $

Note that the since we are dealing with a DT signal, it repeats every $ 2\pi $


Answer 8

$ \begin{align} x[n]= \cos \left( \frac{2 \pi }{500} n \right) = \frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2} \end{align} $

$ \mathcal{X} (\omega) = F[x[n]] = \pi \delta(\omega - \frac{2\pi}{500}) + \pi \delta(\omega + \frac{2\pi}{500}) $

    $  ( \omega \in [-\pi,\pi]) $

$ \mathcal{X} (\omega) = rep_{2\pi}\left[\pi \delta \left(\omega - \frac{2\pi}{500} \right) + \pi \delta \left(\omega + \frac{2\pi}{500} \right) \right] $

Answer 9

$ x[n]= \cos \left( \frac{2 \pi }{500} n \right)=\frac{1}{2}(e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}) $

$ F[x[n]] = \mathcal{X} (\omega) = rep_{2\pi}\left[\pi \delta \left(\omega - \frac{2\pi}{500} \right) + \pi \delta \left(\omega + \frac{2\pi}{500} \right) \right] $

Answer 10

$ \begin{align} x[n]= \cos \left( \frac{2 \pi }{500} n \right) = \frac{ e^{j\frac{2\pi}{500}n}+e^{-j\frac{2\pi}{500}n}}{2} \end{align} $

$ \mathcal{X} (\omega) = F[x[n]] = rep_{2\pi}\left[\pi \delta \left(\omega - \frac{2\pi}{500} \right) + \pi \delta \left(\omega + \frac{2\pi}{500} \right) \right] $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett