Line 28: Line 28:
 
</math>
 
</math>
 
===Answer 2===
 
===Answer 2===
Write it here
+
Claim that <math>CSFT{e^{j \pi (ax +by)}</math>?
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 17:55, 12 November 2011


Continuous-space Fourier transform of a complex exponential (Practice Problem)

What is the Continuous-space Fourier transform (CSFT) of $ f(x,y)= e^{j \pi (ax +by) } $?

Justify your answer.



Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy $

$ = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy $ $ = \frac{1}{j\pi(a-2u)}\frac{1}{j\pi(b-2v)}[e^{j \pi x(a-2u)}e^{j \pi y(b - 2v) }]{-\infty}^{\infty} $ $ = {\infty} $

Answer 2

Claim that $ CSFT{e^{j \pi (ax +by)} $?

Answer 3

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood