Line 22: Line 22:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
<math> x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy
 +
</math>
 +
 
 +
<math> = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}]</math>
 +
 
 
===Answer 2===
 
===Answer 2===
 
Write it here
 
Write it here

Revision as of 16:15, 12 November 2011


Continuous-space Fourier transform of the 2D "rect" function (Practice Problem)

Compute the Continuous-space Fourier transform (CSFT) of

$ f(x,y)= \left\{ \begin{array}{ll} 1, & \text{ if } |x|<\frac{1}{2} \text{ and } |y|<\frac{1}{2}\\ 0, & \text{ else}. \end{array} \right. $

Justify your answer.



Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy $

$ = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}] $

Answer 2

Write it here

Answer 3

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

EISL lab graduate

Mu Qiao