Line 14: | Line 14: | ||
---- | ---- | ||
===Answer 1=== | ===Answer 1=== | ||
− | + | <math> x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy | |
+ | </math> | ||
+ | |||
+ | <math> = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy | ||
+ | </math> | ||
+ | <math> = \frac{1}{j\pi(a-2u)}\frac{1}{j\pi(b-2v)}[e^{j \pi x(a-2u)}e^{j \pi y(b - 2v) }]{-\infty}^{\infty} | ||
+ | |||
+ | |||
+ | </math> | ||
+ | <math> = {\infty} | ||
+ | |||
+ | |||
+ | </math> | ||
===Answer 2=== | ===Answer 2=== | ||
Write it here | Write it here |
Revision as of 16:02, 12 November 2011
Contents
Continuous-space Fourier transform of a complex exponential (Practice Problem)
What is the Continuous-space Fourier transform (CSFT) of $ f(x,y)= e^{j \pi (ax +by) } $?
Justify your answer.
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy $
$ = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy $ $ = \frac{1}{j\pi(a-2u)}\frac{1}{j\pi(b-2v)}[e^{j \pi x(a-2u)}e^{j \pi y(b - 2v) }]{-\infty}^{\infty} $ $ = {\infty} $
Answer 2
Write it here
Answer 3
Write it here.