Line 1: Line 1:
= Practice Question on Nyquist rate  =
+
= [[:Category:Problem_solving|Practice Question]] on Nyquist rate  =
 
What is the Nyquist rate of the signal
 
What is the Nyquist rate of the signal
  

Latest revision as of 09:31, 11 November 2011

Practice Question on Nyquist rate

What is the Nyquist rate of the signal

$ x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( 3 \pi t )}{\pi t} ? $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

From property 9 of the table: $ \mathcal{F}(\frac{\sin( W t)}{\pi t }) = \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $

By property 16 of the table: The Fourier transform of the product of two functions is (1/2pi) times the convolution of the Fourier transforms of the individual functions.

So in this case $ \mathcal{F}(x(t))=(u(\omega + \pi) - u(\omega - \pi))*(u(\omega + 3\pi) - u(\omega - 3\pi)) $

$ \mathcal{F}(x(t))=\int_{-\infty}^{\infty} (u(\theta + \pi)-u(\theta - \pi))(u(\omega -\theta + 3\pi)-u(\omega - \theta - 3\pi)) d\theta $


$ \mathcal{F}(x(t))=\int_{-\pi}^{\pi} (u(\omega -\theta + 3\pi)-u(\omega - \theta - 3\pi)) d\theta $

The first step function in the integral is 0 for $ \omega < \theta - 3\pi $. The second step function in the integral is 0 for $ \omega < \theta + 3\pi $. Thus:

$ \mathcal{F}(x(t))= 0 $ for $ \omega < -4\pi $

$ \mathcal{F}(x(t))= 4\pi + \omega $ for $ -4\pi < \omega < -2\pi $

$ \mathcal{F}(x(t))= 2\pi $ for $ -2\pi < \omega < 2\pi $

$ \mathcal{F}(x(t))= 4\pi - \omega $ for $ 2\pi < \omega < 4\pi $

$ \mathcal{F}(x(t))= 0 $ for $ \omega > 4\pi $

The Nyquist rate is twice the maximum nonzero frequency, or $ 2(4\pi) = 8\pi $.


Answer 2

Write it here

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett