Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em;">
+
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:right;">
<center>'''If you enjoy using this [[Collective_Table_of_Formulas|collective table of formula]], please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea].'''</center>
+
{|
 +
|-
 +
|'''If you enjoy using this [[Collective_Table_of_Formulas|collective table of formulas]], please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea] or [[Donations | becoming a sponsor]].'''
 +
| [[Image:DonateNow.png]]
 +
|-
 +
|}
 
</div>
 
</div>
  

Revision as of 05:32, 2 November 2011

If you enjoy using this collective table of formulas, please consider donating to Project Rhea or becoming a sponsor. DonateNow.png


Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition CT Fourier Transform and its Inverse
Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
x[n] $ \longrightarrow $ $ X[k] $
name $ type signal here\ $ $ type transform here \! \ $
name $ type signal here \ $ $ type transform here $
Discrete Fourier Transform Properties
x[n] $ \longrightarrow $ $ X[k] $
multiplication property $ x[n]y[n] \ $ $ write DFT here $
convolution property $ x(t)*y(t) \! $ $ X(f)Y(f) \! $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other Discrete Fourier Transform Properties
property $ type math here $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett