(New page: =Homework 4, ECE438, Fall 2011, Prof. Boutin= ---- ==Question 1== a) ---- ==Question 2== ---- Back to Homework 4 Back to [[2011_Fall_ECE_438_Bou...)
 
Line 3: Line 3:
 
----
 
----
 
==Question 1==
 
==Question 1==
a)
 
  
 +
a) For <math>k=0,1,...,N-1</math>
 +
 +
<math>\begin{align}
 +
X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\
 +
&= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\
 +
&= 1
 +
\end{align}</math>
 +
 +
b)
 
----
 
----
 
==Question 2==
 
==Question 2==

Revision as of 14:15, 13 October 2011

Homework 4, ECE438, Fall 2011, Prof. Boutin


Question 1

a) For $ k=0,1,...,N-1 $

$ \begin{align} X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\ &= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\ &= 1 \end{align} $

b)


Question 2


Back to Homework 4

Back to ECE 438 Fall 2011

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal