Line 13: Line 13:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  [[Discrete Fourier Transform|Discrete Fourier Transform]]  
 
| align="right" style="padding-right: 1em;" |  [[Discrete Fourier Transform|Discrete Fourier Transform]]  
| <math>X [k] = \sum_{k=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math>
+
| <math>X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform  
 
| align="right" style="padding-right: 1em;" | Inverse Discrete Fourier Transform  

Revision as of 16:32, 4 October 2011

Discrete Fourier Transform

Please help building this page!

Discrete Fourier Transform Pairs and Properties (info)
Definition CT Fourier Transform and its Inverse
Discrete Fourier Transform $ X [k] = \sum_{n=0}^{N-1} x[n]e^{-j 2\pi \frac{k n}{N}} \, $
Inverse Discrete Fourier Transform $ \,x [n] = (1/N) \sum_{k=0}^{N-1} X[k] e^{j 2\pi\frac{kn}{N}} \, $
Discrete Fourier Transform Pairs (info)
x[n] $ \longrightarrow $ $ X[k] $
name $ type signal here\ $ $ type transform here \! \ $
name $ type signal here \ $ $ type transform here $
Discrete Fourier Transform Properties
x[n] $ \longrightarrow $ $ X[k] $
multiplication property $ x[n]y[n] \ $ $ write DFT here $
convolution property $ x(t)*y(t) \! $ $ X(f)Y(f) \! $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other Discrete Fourier Transform Properties
property $ type math here $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett