Line 29: Line 29:
 
\end{align}</math>
 
\end{align}</math>
  
<span style="color:green">TA's comments: What about the ROC?</span>
+
:<span style="color:green">TA's comments: What about the ROC?</span>
 +
:<span style="color:orange">Instructor's comments: Don't forget to check wether z=infinity is part of the ROC. -pm</span>
 
=== Answer 2===
 
=== Answer 2===
 
<math>Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n}</math>
 
<math>Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n}</math>
Line 61: Line 62:
 
<math>X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) =  Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0]
 
<math>X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) =  Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0]
 
</math>
 
</math>
 
+
:<span style="color:orange">Instructor's comments: When you write "C" do you mean the finite z-plane only? Note that you need to check convergence at the point z=infinity separately. -pm </span>
 
===Answer 4===
 
===Answer 4===
 
<math>X[n] = nu[n] - nu[n-3]</math>
 
<math>X[n] = nu[n] - nu[n-3]</math>
Line 68: Line 69:
  
 
   ROC z not equal to 1
 
   ROC z not equal to 1
 +
:<span style="color:orange">Instructor's comments: How about z=infinity? Is that point in the ROC? -pm</span>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 03:20, 3 October 2011

Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n u[n]-n u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Begin with the definition of a Z-Transform.

$ X(z) = \sum_{n=-\infty}^{\infty}(n u[n]-n u[n-3])z^{-n} $

Simplify a little. (pull out the n and realize $ u[n]-u[n-3] $ is only non-zero for 0, 1, and 2.)

$ X(z) = \sum_{n=0}^{2}n z^{-n} $

Then we have a simple case of evaluating for 3 points.

$ \begin{align} X(z) &= 0 z^{-0} + 1 z^{-1} + 2 z^{-2} \\ &= \frac{z+2}{z^2} \end{align} $

TA's comments: What about the ROC?
Instructor's comments: Don't forget to check wether z=infinity is part of the ROC. -pm

Answer 2

$ Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n} $

when n=0,1,2, x[n] is n; otherwise x[n]=0. So:

$ x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2} $ with ROC=all finite complex number except 0.

test for infinity:

$ X(\frac{1}{z})=z+z^2 $

when z=0,$ X(\frac{1}{z}) $converges

X(z) converges at $ z=\infty $

so ROC of X(z) is all complex number except 0.


Answer 3

First the axiom need to be prove:

$ Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] $

Observe the original function

$ x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2] $

so by two axioms proved above, with the linearity property,

$ X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) = Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0] $

Instructor's comments: When you write "C" do you mean the finite z-plane only? Note that you need to check convergence at the point z=infinity separately. -pm

Answer 4

$ X[n] = nu[n] - nu[n-3] $

$ X(z) = \sum_{n=0}^{2}n z^{-n} $ = 0 + z^{-1} + 2*Z^{-2}

 ROC z not equal to 1
Instructor's comments: How about z=infinity? Is that point in the ROC? -pm

Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn