Line 1: Line 1:
 
I did the first one by contradiction and a lot of cases.
 
I did the first one by contradiction and a lot of cases.
  
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}, and I'll let \alpha = \sup A, \beta = \sup B</math>
+
Given <math>A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}</math>, and I'll let <math>\alpha = \sup A, \beta = \sup B</math>
  
<math>WTS:  \sup(A+B) = \alpha + \beta</math>
+
WTS:  <math>\sup(A+B) = \alpha + \beta</math>
  
<math>First of all, by the lub property of \mathbf{R} we know that these exist.</math>
+
First of all, by the lub property of <math>\mathbf{R}</math> we know that these exist.
  
<math>Now we show that \alpha + \beta is an upper bound of A+B by contradiction.  Thus \exist a,b \in A,B \ni a+b > \alpha + \beta </math>
+
Now we show that <math>\alpha + \beta</math> is an upper bound of <math>A+B</math> by contradiction.  Thus <math>\exist a,b \in A,B \ni a+b > \alpha + \beta </math>
  
 
<math>(\alpha - a) + (\beta - b) < 0</math>
 
<math>(\alpha - a) + (\beta - b) < 0</math>
  
<math>WLOG assume (\alpha - a) < 0, then \exists a \in A \ni a > \alpha, but \alpha = \sup A, contradiction.</math>
+
WLOG assume <math>(\alpha - a) < 0</math>, then <math>\exists a \in A \ni a > \alpha, but \alpha = \sup A</math>, contradiction.
  
<math>\therefore \alpha + \beta is an upper bound of A+B</math>
+
<math>\therefore \alpha + \beta</math> is an upper bound of <math>A+B</math>

Revision as of 04:40, 28 August 2008

I did the first one by contradiction and a lot of cases.

Given $ A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \} $, and I'll let $ \alpha = \sup A, \beta = \sup B $

WTS: $ \sup(A+B) = \alpha + \beta $

First of all, by the lub property of $ \mathbf{R} $ we know that these exist.

Now we show that $ \alpha + \beta $ is an upper bound of $ A+B $ by contradiction. Thus $ \exist a,b \in A,B \ni a+b > \alpha + \beta $

$ (\alpha - a) + (\beta - b) < 0 $

WLOG assume $ (\alpha - a) < 0 $, then $ \exists a \in A \ni a > \alpha, but \alpha = \sup A $, contradiction.

$ \therefore \alpha + \beta $ is an upper bound of $ A+B $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood