Line 2: Line 2:
  
 
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}
 
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \}
 
\newline
 
  
 
WTS:  \sup(A+B) = \supA + \sup B</math>
 
WTS:  \sup(A+B) = \supA + \sup B</math>

Revision as of 04:33, 28 August 2008

I did the first one by contradiction and a lot of cases.

$ Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \} WTS: \sup(A+B) = \supA + \sup B $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang