Line 2: | Line 2: | ||
<math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \} | <math>Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \} | ||
− | |||
− | |||
WTS: \sup(A+B) = \supA + \sup B</math> | WTS: \sup(A+B) = \supA + \sup B</math> |
Revision as of 04:33, 28 August 2008
I did the first one by contradiction and a lot of cases.
$ Given A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \ in B \} WTS: \sup(A+B) = \supA + \sup B $