Line 67: Line 67:
 
  =\delta [0]e^{-j0\omega}+\delta [1]e^{-j\omega}+\delta[2]e^{-j2\omega}</math>
 
  =\delta [0]e^{-j0\omega}+\delta [1]e^{-j\omega}+\delta[2]e^{-j2\omega}</math>
  
<math>
 
=e^{-j0\omega}\sum_{n=-\infty}^{\infty}\delta [n]+e^{-j\omega}\sum_{n=-\infty}^{\infty}\delta [n-1]+e^{-j2\omega}\sum_{n=-\infty}^{\infty}\delta [n-2]</math>
 
  
 
<math>
 
<math>

Revision as of 15:45, 6 September 2011

Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= u[n]-u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j0\omega}+\delta [n-1]e^{-j\omega}+\delta[n-2]e^{-j2\omega}]) $

$ =e^{-j0\omega}\sum_{n=-\infty}^{\infty}\delta [n]+e^{-j\omega}\sum_{n=-\infty}^{\infty}\delta [n-1]+e^{-j2\omega}\sum_{n=-\infty}^{\infty}\delta [n-2] $

$ =1+e^{-j\omega}+e^{-j2\omega} $

Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm

Answer 2

$ \mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} (u[n] - u[n-3]) e^{-j\omega n} $

$ = \sum_{n=-\infty}^{\infty} u[n]e^{-j\omega n} - \sum_{n=-\infty}^{\infty}u[n-3]e^{-j\omega n} = \sum_{n=0}^{\infty}e^{-j\omega n} - \sum_{n=3}^{\infty}e^{-j\omega n} $

Let l = n-3

$ = \frac{1}{1-e^{-j\omega}} - \sum_{l=0}^{\infty}e^{-j\omega l}e^{-j\omega 3} = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3} \sum_{l=0}^{\infty}(e^{-j\omega})^{l} $

$ = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3}\frac{1}{1-e^{-j\omega}} $

Answer 3

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\delta [0]e^{-j0\omega}+\delta [1]e^{-j\omega}+\delta[2]e^{-j2\omega} $


$ =1+e^{-j\omega}+e^{-j2\omega} $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood