Line 34: Line 34:
 
</math>
 
</math>
 
:<span style="color:green">Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm </span>
 
:<span style="color:green">Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm </span>
 +
 
===Answer 2===
 
===Answer 2===
Write it here.
+
<math> \mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
 +
                          = \sum_{n=-\infty}^{\infty} (u[n] - u[n-3]) e^{-j\omega n}
 +
</math>
 +
 
 +
<math>                    = \sum_{n=-\infty}^{\infty} u[n]e^{-j\omega n} - \sum_{n=-\infty}^{\infty}u[n-3]e^{-j\omega n}
 +
                          = \sum_{n=0}^{\infty}e^{-j\omega n} - \sum_{n=3}^{\infty}e^{-j\omega n}
 +
</math>
 +
 
 +
Let l = n-3
 +
 
 +
<math>                    = \frac{1}{1-e^{-j\omega}} - \sum_{l=0}^{\infty}e^{-j\omega l}e^{-j\omega 3}
 +
                          = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3} \sum_{l=0}^{\infty}(e^{-j\omega})^{l}
 +
</math>
 +
 
 +
<math>                    = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3}\frac{1}{1-e^{-j\omega}}
 +
</math>
 +
 
 
===Answer 3===
 
===Answer 3===
 
write it here.
 
write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 15:01, 6 September 2011

Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= u[n]-u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j0\omega}+\delta [n-1]e^{-j\omega}+\delta[n-2]e^{-j2\omega}]) $

$ =e^{-j0\omega}\sum_{n=-\infty}^{\infty}\delta [n]+e^{-j\omega}\sum_{n=-\infty}^{\infty}\delta [n-1]+e^{-j2\omega}\sum_{n=-\infty}^{\infty}\delta [n-2] $

$ =1+e^{-j\omega}+e^{-j2\omega} $

Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm

Answer 2

$ \mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} (u[n] - u[n-3]) e^{-j\omega n} $

$ = \sum_{n=-\infty}^{\infty} u[n]e^{-j\omega n} - \sum_{n=-\infty}^{\infty}u[n-3]e^{-j\omega n} = \sum_{n=0}^{\infty}e^{-j\omega n} - \sum_{n=3}^{\infty}e^{-j\omega n} $

Let l = n-3

$ = \frac{1}{1-e^{-j\omega}} - \sum_{l=0}^{\infty}e^{-j\omega l}e^{-j\omega 3} = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3} \sum_{l=0}^{\infty}(e^{-j\omega})^{l} $

$ = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3}\frac{1}{1-e^{-j\omega}} $

Answer 3

write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett