Line 21: Line 21:
  
 
<math>
 
<math>
\lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n
+
  \lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n
 
</math>
 
</math>
  

Revision as of 15:07, 5 September 2011

Homework 2 collaboration area

Here's some interesting stuff:

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $


S5.2_45

$ f\left( x \right)=2x^3 $

$ \lim_{N\rightarrow\infty}\sum_{n=1}^Nf\left( x_n^* \right)\,\Delta x_n $

$ =\lim_{N\rightarrow\infty}\sum_{n=1}^N2\cdot\left( \dfrac nN \right)^3\cdot\dfrac1N $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett