Line 29: Line 29:
  
 
<math>X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f})</math>
 
<math>X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f})</math>
 +
 +
----
 +
==Question 2 ==
 +
 +
We cannot compute the Fourier transform directly because
 +
 +
<math>{\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
 +
 +
cannot be integrated.
 +
 +
Instead, we can find out <math>{\mathcal X}(\omega) </math> using inverse Fourier transform.
 +
 +
<math>x(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega</math>
 +
  
 
----
 
----

Revision as of 14:33, 4 September 2011

Homework 1, ECE438, Fall 2011, Prof. Boutin

Question 1

In ECE301, you learned that the Fourier transform of a step function $ x(t)=u(t) $ is the following:

$ {\mathcal X} (\omega) = \frac{1}{j \omega} + \pi \delta (\omega ). $

Use this fact to obtain an expression for the Fourier transform $ X(f) $ (in terms of frequency in hertz) of the step function. (Your answer should agree with the one given in this table.) Justify all your steps.

Answer: Recall the relation between frequency in hertz $ f $ and frequency in radius $ \omega $

$ \omega =2\pi f $

Pull in the relation into the fact, we obtain

$ {\mathcal X}(2\pi f) = \frac{1}{j 2\pi f} + \pi \delta (2\pi f ). (*) $

Then we justify the following equality.

$ \delta(ax) = \frac{1}{a}\delta(x) $

Given $ \int\limits_{-\infty}^{\infty}\delta(x)dx=1 $

then $ \int\limits_{-\infty}^{\infty}\delta(ax)dx \overset{\underset{\mathrm{y=ax}}{}}{=} \int\limits_{-\infty}^{\infty}\frac{1}{a}\delta(y)dy = \frac{1}{a} $

Therefore, $ \delta(ax) = \frac{1}{a}\delta(x) $

Therefore, (*) can be further simplified to

$ X(f) = \frac{1}{j 2\pi f} + \frac{1}{2}\delta (f), where X(f) := {\mathcal X}({j 2\pi f}) $


Question 2

We cannot compute the Fourier transform directly because

$ {\mathcal X}(\omega) = \int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

cannot be integrated.

Instead, we can find out $ {\mathcal X}(\omega) $ using inverse Fourier transform.

$ x(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty}{\mathcal X}(\omega)e^{j\omega t}d\omega $



Back to Homework1

Back to ECE438, Fall 2011, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang