Line 8: | Line 8: | ||
<math>\vdots</math> <math>\vdots</math> | <math>\vdots</math> <math>\vdots</math> | ||
+ | |||
+ | <math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}</math> | ||
[[Category:MA181Fall2011Bell]] | [[Category:MA181Fall2011Bell]] |
Revision as of 20:44, 3 September 2011
Homework 2 collaboration area
$ \sum_{n=1}^N 1 = \dfrac11N $
$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $
$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $
$ \vdots $ $ \vdots $
$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!} $