Line 1: | Line 1: | ||
− | [[Category:ECE301 S11 Exam 3 more practice]][[Category: | + | [[Category:ECE301 S11 Exam 3 more practice]] |
+ | [[Category:ECE301Spring2011Boutin]] | ||
+ | [[Category:Problem_solving]] | ||
− | = | + | = Problem = |
+ | Compute the convolution | ||
+ | <math>z(t)=x(t)*y(t) \ </math> | ||
+ | between | ||
− | + | <math> x(t) = sin(t)u(t + \pi) \ </math> | |
+ | |||
+ | and | ||
+ | <math>y(t) = cos(t)u(t-\pi) \ </math>. | ||
+ | = My Solution= | ||
+ | <math> | ||
+ | \begin{align} | ||
+ | z(t) &= sin(t)u(t + \pi) * cos(t)u(t-\pi) \\ | ||
+ | &= \int_{-\infty}^{\infty} sin(\tau)u(\tau + \pi)cos(t - \tau)u(t - \tau -\pi) \mathrm{d}\tau \\ | ||
+ | &= \int_{-\pi}^{t-\pi} sin(\tau) cos(t - \tau) \mathrm{d}\tau \\ | ||
+ | &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j(t-\tau)} + e^{-j(t-\tau)}}{2} \mathrm{d}\tau \\ | ||
+ | &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j t} e^{-j\tau} + e^{-j t}e^{+j\tau}}{2} \mathrm{d}\tau \\ | ||
+ | &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau}e^{j t}e^{-j\tau}}{4j} + \frac{e^{j\tau}e^{-j t}e^{+j\tau}}{4j} - | ||
+ | \frac{e^{-j\tau}e^{j t}e^{-j\tau}}{4j} - | ||
+ | \frac{e^{-j\tau}e^{-j t}e^{+j\tau}}{4j}\mathrm{d}\tau \\ | ||
+ | &= \int_{-\pi}^{t-\pi} \frac{e^{j t}}{4j} + \frac{e^{j2\tau}e^{-j t}}{4j} - | ||
+ | \frac{e^{-j2\tau}e^{j t}}{4j} - | ||
+ | \frac{e^{-j t}}{4j}\mathrm{d}\tau \\ | ||
+ | |||
+ | &= \begin{cases} | ||
+ | \frac{t e^{j t}}{4j} + | ||
+ | \frac{e^{-j t}}{4j}\int_{-\pi}^{t-\pi}e^{2j\tau}\mathrm{d}\tau - | ||
+ | \frac{e^{j t}}{4j}\int_{-\pi}^{t-\pi}e^{-2j\tau}\mathrm{d}\tau - | ||
+ | \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ | ||
+ | 0 &, \text{else} | ||
+ | \end{cases}\\ | ||
+ | |||
+ | &= \begin{cases} | ||
+ | \frac{t e^{j t}}{4j} + | ||
+ | \frac{e^{-j t}}{4j} \left( \frac{e^{2j\tau}}{2j}\Big|_{-\pi}^{t-\pi} \right)- | ||
+ | \frac{e^{j t}}{4j} \left( \frac{e^{-2j\tau}}{-2j}\Big|_{-\pi}^{t-\pi} \right)- | ||
+ | \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ | ||
+ | 0 &, \text{else} | ||
+ | \end{cases}\\ | ||
+ | |||
+ | &= \begin{cases} | ||
+ | \frac{t e^{j t}}{4j} | ||
+ | -\frac{e^{jt}}{8} + \frac{e^{-jt}}{8} - | ||
+ | \frac{e^{-jt}}{8} + \frac{e^{jt}}{8} - | ||
+ | \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ | ||
+ | 0 &, \text{else} | ||
+ | \end{cases}\\ | ||
+ | |||
+ | &= \begin{cases} | ||
+ | \frac{t e^{j t}}{4j} | ||
+ | -\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ | ||
+ | 0 &, \text{else} | ||
+ | \end{cases}\\ | ||
+ | \end{align} | ||
+ | </math> | ||
+ | ==Comments== | ||
+ | Write them here. | ||
+ | ---- | ||
[[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]] | [[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]] |
Latest revision as of 06:22, 6 May 2011
Problem
Compute the convolution
$ z(t)=x(t)*y(t) \ $
between
$ x(t) = sin(t)u(t + \pi) \ $
and
$ y(t) = cos(t)u(t-\pi) \ $.
My Solution
$ \begin{align} z(t) &= sin(t)u(t + \pi) * cos(t)u(t-\pi) \\ &= \int_{-\infty}^{\infty} sin(\tau)u(\tau + \pi)cos(t - \tau)u(t - \tau -\pi) \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} sin(\tau) cos(t - \tau) \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j(t-\tau)} + e^{-j(t-\tau)}}{2} \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau} - e^{-j\tau}}{2j} \frac{e^{j t} e^{-j\tau} + e^{-j t}e^{+j\tau}}{2} \mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j\tau}e^{j t}e^{-j\tau}}{4j} + \frac{e^{j\tau}e^{-j t}e^{+j\tau}}{4j} - \frac{e^{-j\tau}e^{j t}e^{-j\tau}}{4j} - \frac{e^{-j\tau}e^{-j t}e^{+j\tau}}{4j}\mathrm{d}\tau \\ &= \int_{-\pi}^{t-\pi} \frac{e^{j t}}{4j} + \frac{e^{j2\tau}e^{-j t}}{4j} - \frac{e^{-j2\tau}e^{j t}}{4j} - \frac{e^{-j t}}{4j}\mathrm{d}\tau \\ &= \begin{cases} \frac{t e^{j t}}{4j} + \frac{e^{-j t}}{4j}\int_{-\pi}^{t-\pi}e^{2j\tau}\mathrm{d}\tau - \frac{e^{j t}}{4j}\int_{-\pi}^{t-\pi}e^{-2j\tau}\mathrm{d}\tau - \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} + \frac{e^{-j t}}{4j} \left( \frac{e^{2j\tau}}{2j}\Big|_{-\pi}^{t-\pi} \right)- \frac{e^{j t}}{4j} \left( \frac{e^{-2j\tau}}{-2j}\Big|_{-\pi}^{t-\pi} \right)- \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} -\frac{e^{jt}}{8} + \frac{e^{-jt}}{8} - \frac{e^{-jt}}{8} + \frac{e^{jt}}{8} - \frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ &= \begin{cases} \frac{t e^{j t}}{4j} -\frac{t e^{-j t}}{4j} &, \text{when } t> 0 \\ 0 &, \text{else} \end{cases}\\ \end{align} $
Comments
Write them here.