Line 9: Line 9:
  
 
Tricks:  
 
Tricks:  
 
+
If #No of vectors > Dimension ⇔ it is '''linearly dependent'''
 
If det(vectors) != 0 ⇔ '''linearly independent'''  
 
If det(vectors) != 0 ⇔ '''linearly independent'''  
 
 
If det(vectors) = 0 ⇔ '''linearly dependent'''  
 
If det(vectors) = 0 ⇔ '''linearly dependent'''  
 
If #No of vectors > Dimension ⇔ it is '''linearly dependent'''
 
  
 
Example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)</math> is '''linearly dependent''' in R<sup>2</sup> because the last column [-1 2]<sup>T</sup> i.e z is a parameter as there can be no leading 1 for that column. You can express x = z and y = -2z
 
Example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)</math> is '''linearly dependent''' in R<sup>2</sup> because the last column [-1 2]<sup>T</sup> i.e z is a parameter as there can be no leading 1 for that column. You can express x = z and y = -2z
  
 
<u>'''Span'''</u>  
 
<u>'''Span'''</u>  
 
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''
 
  
 
*If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.&nbsp
 
*If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.&nbsp
Line 26: Line 21:
  
 
Tricks:
 
Tricks:
If det(vectors)&nbsp;!= 0 ⇔ it spans<br>
+
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''
If det(vectors) = 0 ⇔ '''does not span'''<br>
+
If det(vectors)&nbsp;!= 0 ⇔ '''it spans'''
 +
If det(vectors) = 0 ⇔ '''does not span'''
  
 
  For example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)</math> spans R<sup>2</sup><br>  
 
  For example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)</math> spans R<sup>2</sup><br>  

Revision as of 09:42, 1 May 2011

Tricks for checking Linear Independence, Span and Basis

Note: For this article, I am assuming number of vectors is equal to the dimension of the vector space for calculating the determinant. If it is not, you need to do rref.


Linear Independence

  • If end result of the rref(vectors) gives an identity matrix, it is linearly independent
  • If end result of the rref(vectors) gives you a parameter in the matrix, the vectors are linearly dependent.

Tricks: If #No of vectors > Dimension ⇔ it is linearly dependent If det(vectors) != 0 ⇔ linearly independent If det(vectors) = 0 ⇔ linearly dependent

Example: $ rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right) $ is linearly dependent in R2 because the last column [-1 2]T i.e z is a parameter as there can be no leading 1 for that column. You can express x = z and y = -2z

Span

  • If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, it spans.&nbsp
  • If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it does not span.

Tricks: If Dimension > #No of vectors -> it CANNOT span If det(vectors) != 0 ⇔ it spans If det(vectors) = 0 ⇔ does not span

For example: $ rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right) $ spans R2

Basis


If Dimension > #No of vectors ⇔ cannot span ⇔ is not a basis

If #No of vectors > Dimension -> it is not a basis.

If #No of vectors = Dimension -> it has to be linearly independent to span


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett