Line 1: Line 1:
'''Tricks for checking Linear Independence, Span and Basis'''
+
'''Tricks for checking Linear Independence, Span and Basis'''  
  
Note: This article assumes that you can only calculate a det for a square matrix.
+
Note: This article assumes that you can only calculate a det for a square matrix.  
  
 
<br> <u>'''Linear Independence'''</u>  
 
<br> <u>'''Linear Independence'''</u>  
Line 15: Line 15:
 
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''  
 
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''  
  
If det(vectors)&nbsp;!= 0 ⇔ it spans<br>If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.&nbsp; For example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)$) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)$</math><br>
+
If det(vectors)&nbsp;!= 0 ⇔ it spans<br>If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.&nbsp; For example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)</math> spans R<sup>2</sup><br>  
  
 
If det(vectors) = 0 ⇔ '''does not span'''<br>If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it '''does not span.'''  
 
If det(vectors) = 0 ⇔ '''does not span'''<br>If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it '''does not span.'''  
Line 25: Line 25:
 
If #No of vectors &gt; Dimension -&gt; it has to be linearly dependent to span (check the tip)  
 
If #No of vectors &gt; Dimension -&gt; it has to be linearly dependent to span (check the tip)  
  
If #No of vectors = Dimension -&gt; it has to be linearly independent to span<span class="texhtml">''
+
If #No of vectors = Dimension -&gt; it has to be linearly independent to span<span class="texhtml"></span>  
''</span>  
+
  
 
[[Category:MA265Spring2011Momin]]
 
[[Category:MA265Spring2011Momin]]

Revision as of 07:34, 1 May 2011

Tricks for checking Linear Independence, Span and Basis

Note: This article assumes that you can only calculate a det for a square matrix.


Linear Independence

If det(vectors) != 0 ⇔ linearly independent
If end result of the rref(vectors) gives an identity matrix, it is linearly independent

If det(vectors) = 0 ⇔ linearly dependent
If end result of the rref(vectors) gives you a parameter in the equation, the vectors are linearly dependent.

Tip: If #No of vectors > Dimension ⇔ it is linearly dependent

Span

If Dimension > #No of vectors -> it CANNOT span

If det(vectors) != 0 ⇔ it spans
If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, it spans.  For example: $ rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right) $ spans R2

If det(vectors) = 0 ⇔ does not span
If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it does not span.

Basis


If Dimension > #No of vectors ⇔ cannot span ⇔ is not a basis

If #No of vectors > Dimension -> it has to be linearly dependent to span (check the tip)

If #No of vectors = Dimension -> it has to be linearly independent to span

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch