Line 1: Line 1:
 
'''Tricks for checking Linear Independence, Span and Basis'''
 
'''Tricks for checking Linear Independence, Span and Basis'''
 +
 +
Note: This article assumes that you can only calculate a det for a square matrix.
  
 
<br> <u>'''Linear Independence'''</u>  
 
<br> <u>'''Linear Independence'''</u>  
  
If det(vectors)&nbsp;!= 0 ⇔ '''linearly independent'''<br> If end result of the rref(vectors) gives you a matrix with all rows having leading 1's it is '''linearly independent'''. <math>$M = \left( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \right)$</math>
+
If det(vectors)&nbsp;!= 0 ⇔ '''linearly independent'''<br> If end result of the rref(vectors) gives an identity matrix, it is '''linearly independent'''  
  
 
If det(vectors) = 0 ⇔ '''linearly dependent'''<br>If end result of the rref(vectors) gives you a parameter in the equation, the vectors are '''linearly dependent.'''  
 
If det(vectors) = 0 ⇔ '''linearly dependent'''<br>If end result of the rref(vectors) gives you a parameter in the equation, the vectors are '''linearly dependent.'''  
Line 13: Line 15:
 
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''  
 
If Dimension &gt; #No of vectors -&gt; '''it CANNOT span'''  
  
If det(vectors)&nbsp;!= 0 ⇔ it spans<br>If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.  
+
If det(vectors)&nbsp;!= 0 ⇔ it spans<br>If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, '''it spans'''.&nbsp; For example: <math>rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)$) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)$</math><br>
  
 
If det(vectors) = 0 ⇔ '''does not span'''<br>If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it '''does not span.'''  
 
If det(vectors) = 0 ⇔ '''does not span'''<br>If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it '''does not span.'''  
Line 23: Line 25:
 
If #No of vectors &gt; Dimension -&gt; it has to be linearly dependent to span (check the tip)  
 
If #No of vectors &gt; Dimension -&gt; it has to be linearly dependent to span (check the tip)  
  
If #No of vectors = Dimension -&gt; it has to be linearly independent to span<br> <span class="texhtml">''I''''n''''s''''e''''r''''t''''f''''o''''r''''m''''u''''l''''a''''h''''e''''r''''e''</span>  
+
If #No of vectors = Dimension -&gt; it has to be linearly independent to span<span class="texhtml">''
 +
''</span>  
  
 
[[Category:MA265Spring2011Momin]]
 
[[Category:MA265Spring2011Momin]]

Revision as of 07:30, 1 May 2011

Tricks for checking Linear Independence, Span and Basis

Note: This article assumes that you can only calculate a det for a square matrix.


Linear Independence

If det(vectors) != 0 ⇔ linearly independent
If end result of the rref(vectors) gives an identity matrix, it is linearly independent

If det(vectors) = 0 ⇔ linearly dependent
If end result of the rref(vectors) gives you a parameter in the equation, the vectors are linearly dependent.

Tip: If #No of vectors > Dimension ⇔ it is linearly dependent

Span

If Dimension > #No of vectors -> it CANNOT span

If det(vectors) != 0 ⇔ it spans
If end result of the rref(vectors) gives you a matrix with all rows having leading 1's, it spans.  For example: $ rref(\left( \begin{smallmatrix} 1&2&3\\ 2&3&4 \end{smallmatrix} \right)$) = \left( \begin{smallmatrix} 1&0&-1\\ 0&1&2 \end{smallmatrix} \right)$ $

If det(vectors) = 0 ⇔ does not span
If end result of the rref(vectors) gives you a matrix with not all rows having a leading 1, it does not span.

Basis


If Dimension > #No of vectors ⇔ cannot span ⇔ is not a basis

If #No of vectors > Dimension -> it has to be linearly dependent to span (check the tip)

If #No of vectors = Dimension -> it has to be linearly independent to span

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett