Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
 
----
 
----
 +
 
= Practice Question on Computing the inverse z-transform  =
 
= Practice Question on Computing the inverse z-transform  =
  
Compute the inverse z-transform of the following signal.
+
Compute the inverse z-transform of the following signal.  
  
<math>X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3}</math>
+
<math>X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3}</math>  
  
 
----
 
----
  
 
== Share your answers below  ==
 
== Share your answers below  ==
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here.
+
 
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
+
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)  
 +
 
 
----
 
----
 +
 
=== Answer 1  ===
 
=== Answer 1  ===
  
<math>X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k</math>
+
<math>X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k</math>  
  
let n=-k
+
let n=-k  
  
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>
+
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>  
  
By comparison with <math class="inline">\sum_{n=-\infty}^\infty x[n] z^{-n}:</math>
+
By comparison with <math>\sum_{n=-\infty}^\infty x[n] z^{-n}:</math>  
  
<math>x[n]=(-3)^{-n}u[-n]\,</math>
+
<math>x[n]=(-3)^{-n}u[-n]\,</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
 +
 
 +
:<span style="color: green">TA's comment: Good Job!</span>
 +
:<span style="color: blue">Instructor's comment: You may want to mention where you use the fact that |z|&lt;1/3.</span>
  
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
 
:<span style="color:green">TA's comment: Good Job!</span>
 
:<span style="color:blue">Instructor's comment: You may want to mention where you use the fact that |z|<1/3.</span>
 
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
I agree, but for the missing&nbsp;steps on |z|&lt;1/3, you can say
 +
 
 +
Since |z| &lt; 1/3,&nbsp; |3z| &lt;&nbsp;1
 +
 
 +
Therefore, |-3z| &lt; 1
 +
 
 +
By comparison with the geometric series, where it diverges for |-3z| &lt; 1, you can rewrite the problem as shown in Answer 1.
 +
 
 +
--[[User:Kellsper|Kellsper]] 16:12, 21 April 2011 (UTC)
  
 
=== Answer 3  ===
 
=== Answer 3  ===
Write it here.
+
 
 +
Write it here.  
 +
 
 
----
 
----
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
+
 
 +
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 +
 
 +
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Revision as of 11:12, 21 April 2011


Practice Question on Computing the inverse z-transform

Compute the inverse z-transform of the following signal.

$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3} $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:22, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k $

let n=-k

$ =\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=(-3)^{-n}u[-n]\, $

--Cmcmican 22:22, 16 April 2011 (UTC)

TA's comment: Good Job!
Instructor's comment: You may want to mention where you use the fact that |z|<1/3.

Answer 2

I agree, but for the missing steps on |z|<1/3, you can say

Since |z| < 1/3,  |3z| < 1

Therefore, |-3z| < 1

By comparison with the geometric series, where it diverges for |-3z| < 1, you can rewrite the problem as shown in Answer 1.

--Kellsper 16:12, 21 April 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang