Line 3: Line 3:
 
=ECE301_S11_Exam_3_more_practice=
 
=ECE301_S11_Exam_3_more_practice=
  
 +
This page is intended as a way to practice, please solve the problems on a new page and link your solutions here!
  
 +
==Convolution==
 +
Convolve each of the following using. (aka don't use FT or LT or ZT)
 +
 +
=== CT ===
 +
 +
<math>1)  \begin{align} x(t) &= u(t) - u(t-1) \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
<math>2)  \begin{align} x(t) &= r(t) - r(t-1) \\ y(t) &= r(t+2) - r(t-2) \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
<math>3)  \begin{align} x(t) &= e^{jwt} \\ y(t) &= e^{jwt} \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
<math>4)  \begin{align} x(t) &= sin(t) \\ y(t) &= cos(t) \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
<math>5)  \begin{align} x(t) &= sin(t)\left(u(t) - u(t - 10)\right) \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
<math>6)  \begin{align} x(t) &= \frac{e^{jwt}}{2} \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align}</math>
 +
 +
=== DT ===
 +
<math>7)  \begin{align} x[t] &= u[t] - u[t-1] \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align}</math>
 +
 +
<math>8)  \begin{align} x[t] &= r[t] - r[t-1] \\ y[t] &= r[t+2] - r[t-2] \\ z[t] &= x[t] * y[t] \end{align}</math>
 +
 +
<math>9)  \begin{align} x[t] &= e^{jwt} \\ y[t] &= e^{jwt} \\ z[t] &= x[t] * y[t] \end{align}</math>
 +
 +
<math>10)  \begin{align} x[t] &= sin[t] \\ y[t] &= cos[t] \\ z[t] &= x[t] * y[t] \end{align}</math>
 +
 +
<math>11)  \begin{align} x[t] &= sin[t]\left[u[t] - u[t - 10]\right] \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align}</math>
 +
 +
<math>12)  \begin{align} x[t] &= \frac{e^{jwt}}{2} \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align}</math>
  
Put your content here . . .
 
  
  

Revision as of 05:18, 21 April 2011


ECE301_S11_Exam_3_more_practice

This page is intended as a way to practice, please solve the problems on a new page and link your solutions here!

Convolution

Convolve each of the following using. (aka don't use FT or LT or ZT)

CT

$ 1) \begin{align} x(t) &= u(t) - u(t-1) \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align} $

$ 2) \begin{align} x(t) &= r(t) - r(t-1) \\ y(t) &= r(t+2) - r(t-2) \\ z(t) &= x(t) * y(t) \end{align} $

$ 3) \begin{align} x(t) &= e^{jwt} \\ y(t) &= e^{jwt} \\ z(t) &= x(t) * y(t) \end{align} $

$ 4) \begin{align} x(t) &= sin(t) \\ y(t) &= cos(t) \\ z(t) &= x(t) * y(t) \end{align} $

$ 5) \begin{align} x(t) &= sin(t)\left(u(t) - u(t - 10)\right) \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align} $

$ 6) \begin{align} x(t) &= \frac{e^{jwt}}{2} \\ y(t) &= u(t+2) - u(t-2) \\ z(t) &= x(t) * y(t) \end{align} $

DT

$ 7) \begin{align} x[t] &= u[t] - u[t-1] \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align} $

$ 8) \begin{align} x[t] &= r[t] - r[t-1] \\ y[t] &= r[t+2] - r[t-2] \\ z[t] &= x[t] * y[t] \end{align} $

$ 9) \begin{align} x[t] &= e^{jwt} \\ y[t] &= e^{jwt} \\ z[t] &= x[t] * y[t] \end{align} $

$ 10) \begin{align} x[t] &= sin[t] \\ y[t] &= cos[t] \\ z[t] &= x[t] * y[t] \end{align} $

$ 11) \begin{align} x[t] &= sin[t]\left[u[t] - u[t - 10]\right] \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align} $

$ 12) \begin{align} x[t] &= \frac{e^{jwt}}{2} \\ y[t] &= u[t+2] - u[t-2] \\ z[t] &= x[t] * y[t] \end{align} $



Back to 2011 Spring ECE 301 Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood