Line 25: Line 25:
 
&nbsp;&nbsp; &nbsp; &nbsp; = int<sub>-infinity</sub><sup>infinity</sup>&nbsp;( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW<sup></sup><sub></sub><sub></sub>  
 
&nbsp;&nbsp; &nbsp; &nbsp; = int<sub>-infinity</sub><sup>infinity</sup>&nbsp;( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW<sup></sup><sub></sub><sub></sub>  
  
&nbsp;&nbsp; &nbsp; &nbsp; =&nbsp; int-<sub>pi</sub><sup>pi</sup>&nbsp;(u(w-W+pi) - u(w-W-pi)) dW  
+
&nbsp;&nbsp; &nbsp; &nbsp; =&nbsp; int<sub>-</sub><sub>pi</sub><sup>pi</sup>&nbsp;(u(w-W+pi) - u(w-W-pi)) dW  
  
 
&nbsp;&nbsp; &nbsp; &nbsp; since &nbsp; &nbsp; &nbsp;W-pi &lt;= w &lt; pi-W, &nbsp; &nbsp; and &nbsp; &nbsp; -pi &lt;= W &lt; pi  
 
&nbsp;&nbsp; &nbsp; &nbsp; since &nbsp; &nbsp; &nbsp;W-pi &lt;= w &lt; pi-W, &nbsp; &nbsp; and &nbsp; &nbsp; -pi &lt;= W &lt; pi  

Revision as of 19:38, 20 April 2011

Practice Question on Nyquist rate

What is the Nyquist rate of the signal

Failed to parse (lexing error): x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( \pi t )}{\pi t} ?

^ Sorry, I think I broke the equation in the problem statement but I don't know how to fix it. -ke


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Use CTFT to find the frequency response

Using table, we know FT(sin(pi t)/(pi t)) --> u(w+W) - u(w-W)

X(w) = [u(w+pi) - u(w-pi)] * [u(w+pi) - u(w-pi)]

       = int-infinityinfinity ( [u(W+pi) - u(W-pi)] [u(w-W+pi) - u(w-W-pi)] )dW

       =  int-pipi (u(w-W+pi) - u(w-W-pi)) dW

       since      W-pi <= w < pi-W,     and     -pi <= W < pi

            -2pi <= w < 2pi

I'm not sure if I did the convolution right... help please (if you can read it)

                intpi-w-pidW     if -2pi <= w < 0

X(w) = {     intw-pipidW      if  0 <= w < 2pi

                 0                   else


                 -w-2pi            if -2pi <= w < 0

        = {     2pi-w             if 0 <= w < 2pi

                 0                   else


Regardless, wm = 2pi so NR = 4pi

--Kellsper 22:36, 20 April 2011 (UTC)

Answer 2

Write it here

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal