(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the inverse z-transform = Compute the inverse z-transform of the following signal. ...)
 
Line 11: Line 11:
 
== Share your answers below  ==
 
== Share your answers below  ==
 
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here.
 
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here.
--[[User:Cmcmican|Cmcmican]] 22:17, 16 April 2011 (UTC)
+
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Line 21: Line 21:
 
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>
 
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>
  
<math>X(z)=\frac{1}{1-z} \mbox{, ROC: }\Big|z\Big|<1</math>
+
By comparison with <math class="inline">\sum_{n=-\infty}^\infty x[n] z^{-n}:</math>
  
--[[User:Cmcmican|Cmcmican]] 22:17, 16 April 2011 (UTC)
+
<math>x[n]=(-3)^{-n}u[-n]\,</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
  
 
=== Answer 2  ===
 
=== Answer 2  ===

Revision as of 17:22, 16 April 2011


Practice Question on Computing the inverse z-transform

Compute the inverse z-transform of the following signal.

$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3} $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:22, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k $

let n=-k

$ =\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=(-3)^{-n}u[-n]\, $

--Cmcmican 22:22, 16 April 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang