(New page: For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path. --rtabchou)
 
Line 1: Line 1:
 
For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path.  --rtabchou
 
For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path.  --rtabchou
 +
 +
I'm not sure you are on the right problem.
 +
We need to determine if the graph is planar which it is not by corollary 3 of theorem 1 as 2*v-4=8 which is less than e=9.  You can use this corollary since there are no circuits of length 3.

Revision as of 14:29, 30 November 2008

For the graph of exercise 2, I found a,b,e,d,z. Therefore the total weight is 7. It is the shortest path. --rtabchou

I'm not sure you are on the right problem. We need to determine if the graph is planar which it is not by corollary 3 of theorem 1 as 2*v-4=8 which is less than e=9. You can use this corollary since there are no circuits of length 3.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn