(New page: =Homework 7 Solutions, ECE301 Spring 2011 Prof. Boutin= Students should feel free to make comments/corrections or ask questions directly on this page. ==Qu...)
 
Line 6: Line 6:
  
 
<math>\begin{align}
 
<math>\begin{align}
\mathcal{X}(\omega)&= \sum_{-\infty}^{\infty} 5^{-|n+2|}e^{-j\omega n}\\
+
\mathcal{X}(\omega)&= \sum_{n=-\infty}^{\infty} 5^{-|n+2|}e^{-j\omega n}\\
&= \sum_{-\infty}^{-3} 5^{(n+2)}e^{-j\omega n} dt + \sum_{-2}^{\infty}e^{-j\omega n} \\
+
&= \sum_{n=-\infty}^{-3} 5^{(n+2)}e^{-j\omega n} dt + \sum_{n=-2}^{\infty}e^{-j\omega n} \\
&= 25 \sum_{-\infty}^{-3} \left(\frac{1}{5}e^{j\omega}\right)^{-n} + e^{2j\omega}\sum_{-2}^{\infty} (5e^{j\omega})^{-(n+2)} \\
+
&= 25 \sum_{n=-\infty}^{-3} \left(\frac{1}{5}e^{j\omega}\right)^{-n} + e^{2j\omega}\sum_{n=-2}^{\infty} (5e^{j\omega})^{-(n+2)} \\
&= 25 \sum_{3}^{\infty} \left(\frac{1}{5}e^{j\omega}\right)^{n} + e^{2j\omega}\sum_{0}^{\infty} (5e^{j\omega})^{-n}\\
+
&= 25 \sum_{n=3}^{\infty} \left(\frac{1}{5}e^{j\omega}\right)^{n} + e^{2j\omega}\sum_{n=0}^{\infty} (5e^{j\omega})^{-n}\\
 
&= 25\cdot  \frac{\left(\frac{1}{5}e^{j\omega}\right)^{3}}{1-\frac{1}{5}e^{j\omega}} + \frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}}\\
 
&= 25\cdot  \frac{\left(\frac{1}{5}e^{j\omega}\right)^{3}}{1-\frac{1}{5}e^{j\omega}} + \frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}}\\
 
&=\frac{e^{3j\omega}}{5-e^{j\omega}} + \frac{5e^{2j\omega}}{5-e^{-j\omega}}
 
&=\frac{e^{3j\omega}}{5-e^{j\omega}} + \frac{5e^{2j\omega}}{5-e^{-j\omega}}

Revision as of 15:26, 20 March 2011

Homework 7 Solutions, ECE301 Spring 2011 Prof. Boutin

Students should feel free to make comments/corrections or ask questions directly on this page.

Question 1

$ \begin{align} \mathcal{X}(\omega)&= \sum_{n=-\infty}^{\infty} 5^{-|n+2|}e^{-j\omega n}\\ &= \sum_{n=-\infty}^{-3} 5^{(n+2)}e^{-j\omega n} dt + \sum_{n=-2}^{\infty}e^{-j\omega n} \\ &= 25 \sum_{n=-\infty}^{-3} \left(\frac{1}{5}e^{j\omega}\right)^{-n} + e^{2j\omega}\sum_{n=-2}^{\infty} (5e^{j\omega})^{-(n+2)} \\ &= 25 \sum_{n=3}^{\infty} \left(\frac{1}{5}e^{j\omega}\right)^{n} + e^{2j\omega}\sum_{n=0}^{\infty} (5e^{j\omega})^{-n}\\ &= 25\cdot \frac{\left(\frac{1}{5}e^{j\omega}\right)^{3}}{1-\frac{1}{5}e^{j\omega}} + \frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}}\\ &=\frac{e^{3j\omega}}{5-e^{j\omega}} + \frac{5e^{2j\omega}}{5-e^{-j\omega}} \end{align} $

To verify our answer using the table, we first write:

$ x[n]=5^{(n+2)}u[-n-3]+5^{-(n+2)}u[n+2]=\frac{1}{5}\left(\frac{1}{5}\right)^{-(n+3)}u[-(n+3)]+5^{-(n+2)}u[n+2] $.

Now, using the time reversal property (for the first term) and the time shift property of the DTFT (for both terms), we get:

$ \begin{align} \mathcal{X}(\omega)&=\frac{e^{3j\omega}}{5}\left(\frac{1}{1-\frac{1}{5}e^{j\omega}}\right)+\frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}} \\ &=\frac{e^{3j\omega}}{5-e^{j\omega}}+\frac{5e^{2j\omega}}{5-e^{-j\omega}} \end{align} $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett