Line 3: | Line 3: | ||
:<span style="color:red">THIS PAGE IS STILL UNDER CONSTRUCTION</span> | :<span style="color:red">THIS PAGE IS STILL UNDER CONSTRUCTION</span> | ||
− | + | ||
== Some Fourier series == | == Some Fourier series == | ||
Line 34: | Line 34: | ||
== Properties of CT Fourier systems == | == Properties of CT Fourier systems == | ||
+ | |||
+ | |||
{| border="1" class="wikitable" | {| border="1" class="wikitable" | ||
Line 42: | Line 44: | ||
|- | |- | ||
| | | | ||
− | | | + | | x(t), y(t) are periodic with period T |
− | | | + | | <math>a_k</math> for x(t) and <math>b_k</math> for y(t) |
+ | |- | ||
+ | | Linearity | ||
+ | | <math>Ax(t)+By(t)</math> | ||
+ | | <math>Aa_k+Bb_k</math> | ||
+ | |- | ||
+ | | Time Shifting | ||
+ | | <math>x(t-t_0)</math> | ||
+ | | <math>e^{-j k \omega_0 t_0}a_k = e^{-j k \frac{2\pi}{T}t_0}a_k</math> | ||
+ | |- | ||
+ | | Frequency Shifting | ||
+ | | <math>e^{jM\omega_0t}x(t) = e^{jM\frac{2\pi}{T}t}x(t)</math> | ||
+ | | <math>a_k-M</math> | ||
+ | |- | ||
+ | | Conjugation | ||
+ | | <math>x^*(t)</math> | ||
+ | | <math>a^*_{(-k)}</math> | ||
+ | |- | ||
+ | | Time Reversal | ||
+ | | <math>x(-t)</math> | ||
+ | | <math>a_{(-k)}</math> | ||
+ | |- | ||
+ | | Time scaling | ||
+ | | <math>x(ct), c < 0,</math> periodic with period T/c | ||
+ | | <math>a_k</math> | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
|- | |- | ||
− | | | + | | |
− | | | + | | |
− | | | + | | |
|} | |} | ||
Revision as of 08:40, 7 March 2011
Table of CT Fourier series coefficients and properties
- THIS PAGE IS STILL UNDER CONSTRUCTION
Some Fourier series
Function | Fourier Series | Coefficients |
---|---|---|
$ sin(w_0t) $ | $ \frac{1}{2j}e^{jw_0t}-\frac{1}{2j}e^{-jw_0t} $ | $ a_1=\frac{1}{2j}, a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for } k \ne 1,-1 $ |
$ cos(w_0t) $ | $ \frac{1}{2}e^{jw_0t}+\frac{1}{2}e^{-jw_0t} $ | $ a_1=\frac{1}{2}, a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for } k \ne 1,-1 $ |
periodic square wave
$ x(t)=\begin{cases} 1, & \mbox{if }t<T_1 \\ 0, & \mbox{if }T_1<t<T/2 \end{cases} $ where T is the period and $ 2T_1 $ is the width of the pulse |
$ \sum_{k=1}^N k^2 a_k e^{jk(\frac{2\pi}{T})t} $
(just the normal formula) |
$ a_k = \frac{2sin(k\omega_0T_1)}{k\omega_0T_1} $ |
Properties of CT Fourier systems
Property | Periodic Signal | Fourier Series Coefficients |
---|---|---|
x(t), y(t) are periodic with period T | $ a_k $ for x(t) and $ b_k $ for y(t) | |
Linearity | $ Ax(t)+By(t) $ | $ Aa_k+Bb_k $ |
Time Shifting | $ x(t-t_0) $ | $ e^{-j k \omega_0 t_0}a_k = e^{-j k \frac{2\pi}{T}t_0}a_k $ |
Frequency Shifting | $ e^{jM\omega_0t}x(t) = e^{jM\frac{2\pi}{T}t}x(t) $ | $ a_k-M $ |
Conjugation | $ x^*(t) $ | $ a^*_{(-k)} $ |
Time Reversal | $ x(-t) $ | $ a_{(-k)} $ |
Time scaling | $ x(ct), c < 0, $ periodic with period T/c | $ a_k $ |