Line 36: | Line 36: | ||
--[[User:Cmcmican|Cmcmican]] 17:43, 23 February 2011 (UTC) | --[[User:Cmcmican|Cmcmican]] 17:43, 23 February 2011 (UTC) | ||
+ | :TA's comments: You're almost there. Be careful with the sign when using the time shift property of the Fourier transform. Here <math class="inline">t_0=-\frac{\pi}{12}</math>. So this will yield a multiplication by <math class="inline">e^{j\omega \frac{\pi}{12}}</math> in the frequency domain and not <math class="inline">e^{-j\omega \frac{\pi}{12}}</math>. | ||
=== Answer 3 === | === Answer 3 === |
Revision as of 11:47, 24 February 2011
Contents
Practice Question on Computing the Fourier Transform of a Continuous-time Signal
Compute the Fourier transform of the signal
$ x(t) = \cos (2 \pi t+\frac{\pi}{12} )\ $
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
Use answer to previous practice problem and the time shifting property.
$ \mathfrak{F}\Bigg(s(t-t_0)\Bigg)=e^{j\omega t_0}\mathfrak{F}\Bigg(x(t)\Bigg) $
Therefore,
$ \mathcal X (\omega)=e^{j\omega \frac{\pi}{12}}2\pi \delta(\omega-2\pi k) $
--Cmcmican 20:52, 21 February 2011 (UTC)
- TA's comments: In the time shift property of the Fourier transform that you provided, it should be $ e^{-j\omega t_0} $ and not $ e^{j\omega t_0} $. Another thing is that the transform of a cosine should yield only two deltas in the frequency domain.
Answer 2
I'll try this again, using my new answer from the previous problem, and correcting my time shifting property.
$ \mathfrak{F}\Bigg(s(t-t_0)\Bigg)=e^{-j\omega t_0}\mathfrak{F}\Bigg(x(t)\Bigg) $
Therefore $ \mathcal X (\omega) =e^{-j\omega \frac{\pi}{12}}\Bigg(\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi)\Bigg) $
--Cmcmican 17:43, 23 February 2011 (UTC)
- TA's comments: You're almost there. Be careful with the sign when using the time shift property of the Fourier transform. Here $ t_0=-\frac{\pi}{12} $. So this will yield a multiplication by $ e^{j\omega \frac{\pi}{12}} $ in the frequency domain and not $ e^{-j\omega \frac{\pi}{12}} $.
Answer 3
Write it here.